Security Architectures '18

PKC Basics

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-10-01

About this (small part of the) course

- (Re-) introducing a few public-key algorithms
- Illustrating the need for Public-key Infrastructures (PKIs)
- \Rightarrow Some classical crypto stuff (some overlap w/ CRY-ENG?)
- Main course by F. Autréau \& J.-G. Dumas

Public-key algorithms

Some major examples:

- Asymmetric encryption (one key to encrypt, another to decrypt), e.g. RSA (+ some randomized padding)
- Digital signature (one key to sign, another to verify), e.g. DSA
- Public-key key exchange, e.g. Diffie-Hellman

Note: RSA can be used to implement both a key-exchange and a signature

Diffie-Hellman etc.

First things first: Diffie-Hellman

A simple protocol:

- Let $\mathbb{G}=\langle g\rangle$ be a cyclic finite group with a generator g
- Example: $(\mathbb{Z} / 512 \mathbb{Z},+), g=1$, ord $(g)=512$
- Example: $\mathbb{F}_{257}^{\times}, g=3$, ord $(g)=256$
- Example: $\left(\mathbb{F}_{2}[X] / X^{8}+X^{4}+X^{3}+X^{2}+1\right)^{\times}, g=X$, $\operatorname{ord}(g)=255$
- A picks $a \stackrel{\$}{\leftarrow}\{0, \ldots, \operatorname{ord}(g)-1\}$, sends g^{a} to B
- B picks $b \stackrel{5}{\leftarrow}\{0, \ldots, \operatorname{ord}(g)-1\}$, sends g^{b} to A
- A computes $\left(g^{b}\right)^{a}=g^{b a}=g^{a b}$, sets $k=\operatorname{KDF}\left(g^{a b}\right)$
- B computes $\left(g^{a}\right)^{b}=g^{a b}$, sets $k=\operatorname{KDF}\left(g^{a b}\right)$

With KDF some key derivation function (e.g. a ~ hash function)

Why this works?

Functionality

- A and B only need public information to perform the exchange
- They get the same k
\Rightarrow Public-key key exchange
Security: necessary conditions
- Given g, g^{a}, g^{b}, it must be hard to compute $g^{a b}$
- $k=\operatorname{KDF}\left(g^{a b}\right)$ must be "random-looking" when a, b are random
- There must be many possible values for k

Security focus

A necessary condition: computing discrete logarithms in \mathbb{G} must be "hard"

Discrete logarithm

Let $\mathbb{G}=\langle g\rangle$ be a finite group of order N, the discrete logarithm of $h=g^{a}, a \in\{0, \ldots, N-1\}$ is equal to a

How hard is the "discrete logarithm problem" (DLP) for various groups?

DLP hardness

Proposition

It is always possible to compute the discrete logarithm in a group of order N in time $O(\sqrt{N})$

So one must at least pick N s.t. $2^{\log (N) / 2}$ is large. But:

- $(\mathbb{Z} / n \mathbb{Z},+)$: DLP always easy (logarithm \equiv division)
- \mathbb{F}_{q}^{\times}: usually hard, not maximally hard (needs much less than $\sqrt{N})$
- $E\left(\mathbb{F}_{q}\right)$: usually maximally hard (needs about \sqrt{N})

More on how to pick a group

If the order N of \mathbb{G} is not prime, \mathbb{G} has subgroups

- Let $N=p N^{\prime}$, then g^{p} generates a group of order N^{\prime}

Proposition (Pohlig-Hellman)

It is possible to solve the DLP in \mathbb{G} subgroup-by-subgroup
\Rightarrow For the DLP to be hard, \mathbb{G} must be of order N s.t. DLP is hard in a subgroup of order p, the largest prime factor of N (But no details)

Are we done? Not quite

- Hardness of the DLP cannot be "proven", but a reasonable assumption for some groups
- We also need g^{x} to be random-looking (ditto)

But regardless, Diffie-Hellman as presented only protects againts passive adversaries
\Rightarrow Not very useful in practice

Diffie-Hellman with a man in the middle

- A sends g^{a} to B
- C intercepts the message, sends g^{c} to B
- B sends g^{b} to A
- C intercepts the message, sends g^{c} to A
- A and C share a key $k_{a}=\operatorname{KDF}\left(g^{a c}\right)$
- B and C share a key $k_{b}=\operatorname{KDF}\left(g^{b c}\right)$
- Anytime A sends a message to B with key k_{a}, C decrypts and re-encrypts with k_{b} (and vice-versa)

One way to solve this: signatures

A wants to be sure it is talking to B

- Find B's public verification key for a signature algorithm
- Ask B to sign g^{b}
- Only accept it if the signature is valid

Works well, but A needs to know B's public key beforehand
\Rightarrow We again have a bootstrapping issue
So are we back to square one?

Public-key infrastructures can help

Public keys still help compared to private ones:

- Possibly long term (v . have to be changed after a while (although not a real limitation))
- Scales linearly w/ the number of participants (v. quadratically)
- Trusting only one key is enough, if it signs all the ones you need

Example: TLS certificates

The simple picture:

- Web browsers are pre-loaded with "certificates" (~ public keys) of certification authorities (CAs)
- CAs sign the certificates of websites using secure connections (possibly using intermediaries)
- When connecting to a website, check the entire chain of certificates
- If everything's fine, use the website's public key to authenticate the exchange
More generally, we need a PKI!

So how do we sign?

Signature possibilities

- Use a discrete logarithm based protocol
- Or RSA
- But in both cases, also need a hash function!

Signatures: what?

Objectives of a signature algorithm:

- Given (SK, PK) a key pair
- message $m+$ secret key $\mathrm{SK} \leadsto$ signature $s=\operatorname{Sig}_{\text {SK }}(m)$
- message $m+$ signature $s+$ public key $\mathrm{PK} \leadsto$ verified message $\operatorname{Ver}_{\text {PK }}(m, s)$
Informal security objectives
- Given PK, it should be hard to find SK
- Given PK, it should be hard to forge signatures
- (Variant: given access to a signing oracle $\mathbb{O}_{(S K, P K)}$, it should be hard to forge signatures)
- Formalised as Existential unforgeability under chosen-message attacks (EUF-CMA)

EUF-CMA for Public-Key signatures

EUF-CMA for (Sig, Ver): An adversary cannot forge a valid signature σ for a message m such that $\operatorname{Ver}\left(p k_{C}, \sigma, m\right)$ succeeds, when given (restricted) oracle access to $\operatorname{Sig}\left(s k_{C}, \cdot\right)$:

1 The Challenger chooses a pair $\left(p k_{C}, s k_{C}\right)$ and sends $p k_{C}$ to the Adversary
2 The Adversary may repeatedly submit queries m_{i} to the Challenger
(3) The Challenger answers a query with $\sigma_{i}=\operatorname{Sig}\left(s k_{C}, m_{i}\right)$

4 The Adversary tries to forge a signature σ_{f} for a message $m_{f} \neq i m_{i}$, s.t. $\operatorname{Ver}\left(p k_{C}, \sigma_{f}, m_{f}\right)=\top$

Related: interactive proof of identity

Objective of a proof of ID scheme:

- Publish public identification data α
- When challenged, prove knowledge of a secret related to α

Example of a one-time scheme:
1 Let \mathcal{H} be a preimage-resistant hash function, \mathcal{R} a large set
2 The prover draws $x \stackrel{\$}{\leftarrow} \mathcal{R}$, computes and publishes $X=\mathcal{H}(x)$
3 When challenged, reveals x
Many-time variant:
1 Draw $x \stackrel{\varsigma}{\leftarrow} \mathcal{R}$, compute and publish $X=\mathcal{H}^{N}(x)$
2 When challenged, reveal $\mathcal{H}^{N-1}(x)$, reset $X=\mathcal{H}^{N-1}(x)$

A discrete-log based PoID scheme

~Schnorr identification scheme
1 Let $\mathbb{G}=\langle g\rangle$ be a group with a hard DLP
2 The prover draws $x \stackrel{\$}{\leftarrow} \mathcal{R}$, computes and publishes $X=g^{x}$
3 When challenged; draws r, sends $R=g^{r}$
4 The verifier picks c and sends it
5 The prover computes $a=r+c x$ and sends it
6 The verifier checks that $R X^{c}=g^{a}$
This can be run many times, BUT r's should be random and never repeat!

From PoID to signature

Differences between PoID and signatures:

- PolDs are interactive (in the verification), signatures are not
- Signatures also involve a message

One major observation:

- If the prover can convince that it doesn't control both R and c, interaction is unnecessary
- (Otherwise, nothing is proved)
\Rightarrow Fiat-Shamir transformation: generate c from R with a hash function

Schnorr signatures

To sign a message m with the key (SK, PK) pair $\left(x, X=g^{x}\right)$
1 Pick $r \stackrel{\Phi}{\leftarrow} \mathcal{R}$ and compute $R=g^{r}$
2 Compute $c=\mathcal{H}(R, m)$
3. Compute $a=r+c x$ and output (c, a) as the signature of m

To verify a signature:
1 Compute $\hat{R}=g^{a} / X^{c}=g^{a} / g^{c x}$
2. Check that $c=\mathcal{H}(\hat{R}, m)$

Important: r must (again) be random and not repeat! (Why?)

Where are we with dlog?

If $\mathbb{G}=\langle g\rangle$ is a prime-order group where the DLP is hard (on average \equiv in the worst case), then:

- Can do asymmetric key exchange
- Can do public-key signatures

For signatures we also need

- Good hash functions
- Good pseudorandom number generation

Some comments on dlog attacks

When $\mathbb{G} \approx \mathbb{F}_{p}^{\times}$, the current dlog records are:

- $|p| \approx 768$ bits (Kleinjung et al., 2017), using a Number Field Sieve (NFS) algorithm
- Took about 5300 core years
- $|p| \approx 1024$ bits for a trapdoored prime (Fried et al., 2017), using a Special NFS (SNFS) algorithm
- Took about 385 core years

Note: it may be hard to decide if a prime is trapdoored
One nice (for an attacker) feature of (S)NFS:

- The largest part of the cost is a precomputation, then computing individual dlogs is very fast

Some more comments on dlog: small subgroup attack

Consider a semi-static key exchange,

- Where one of g^{a} or $g^{b}\left(\right.$ say $\left.g^{b}\right)$ is fixed using $\langle g\rangle \subset \mathbb{F}_{p}^{\times}$where \mathbb{F}_{p}^{\times}has many small subgroups
- Then B must check that " \hat{g} " sent by A is in the correct group
- Otherwise, if \hat{g}^{b} is in a small group of order N, a malicious A can learn $b \bmod N$
-...Then $b \bmod N^{\prime}$, etc.
One way to easily prevent this: use $p=2 q+1, q$ a Sophie Germain prime
\Rightarrow Only a small subgroup of order 2 to check for in \mathbb{F}_{p}^{\times}

Diffie-Hellman etc.

RSA etc.

Back to basics

Greatest common divisor (GCD)

The greatest common divisor of two numbers $a, b \in \mathbb{N}$ is the largest number k, noted $\operatorname{gcd}(a, b)$ s.t. $a=k m, b=k m^{\prime}$ for some $m, m^{\prime} \in \mathbb{N}$

Co-primality

Two integers a, b are called coprime if $\operatorname{gcd}(a, b)=1$
Examples:

- $\operatorname{gcd}(n, n)=\operatorname{gcd}(n, 0)=n$ for any n
- $\operatorname{gcd}(n, 1)=1$ for any n
- $\operatorname{gcd}(n, k n)=n$ for any n
- $\operatorname{gcd}(p, q)=1$ for any two prime numbers p, q
- $\operatorname{gcd}(p, n)=1$ for any $n<p$

GCD computation

Given two integers, it is:

- Very important to be able to compute their gcd
- Very easy to do so (cool!)
\leadsto
A nice recurrence:
- Let $a, b \in \mathbb{N}, a>b$
- Then $k=\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$
- If $a \bmod b=0$, then $a=k b=q b \Rightarrow \operatorname{gcd}(a, b)=\operatorname{gcd}(b, 0)=b$
- If $a \bmod b=r$, then $a=k m=q b+r, b=k m^{\prime}$
- $\Rightarrow k m=q k m^{\prime}+r \Rightarrow k\left(m-q m^{\prime}\right)=r \Rightarrow \mathrm{k}$ divides r too!

Euclid's algorithm

The previous recurrence leads to Euclid's algorithm for gcd computation

GCD computation (recursive)

Input: $a, b<a$
Output: $\operatorname{gcd}(a, b)$
1 If $b=0$, return a
2 Return $\operatorname{gcd}(b, a \bmod b)$
In practice, iterative (variant) versions may be preferable

Extended Euclid

Let $a, b, k=\operatorname{gcd}(a, b)$

- Then for any $u, v \in \mathbb{Z}$, $u a+v b=u k m+v k m^{\prime}=k\left(u m+v m^{\prime}\right)=k w$ with $w=u m+v m^{\prime}$
- Of particular interest are any u, v s.t. $u m+v m^{\prime}=1$, then we have $u a+v b=k=\operatorname{gcd}(a, b)$
- One can easily compute such u, v by extending Euclid's algorithm

Extended Euclid (cont.)

Extended Euclid algorithm

Input: $a, b<a$
Output: $k=\operatorname{gcd}(a, b), u, v$ s.t. $u a+v b=k$
1 If $b=0$, return $(k=a, u=1, v=0) \triangleright 1 \times a+0 \times 0=a$
2 Set $r=a \bmod b, q=a \div b \triangleright r=a-q b$
3 Let $\left(k, u^{\prime}, v^{\prime}\right) \leftrightarrow \operatorname{gcd}(b, r) \triangleright u^{\prime} b+v^{\prime} r=k=\operatorname{gcd}(a, b)$

$$
\begin{aligned}
& \triangleright u^{\prime} b+v^{\prime}(a-q b)=k \\
& \triangleright b\left(u^{\prime}-q\right)+v^{\prime} a=k
\end{aligned}
$$

4 Return $\left(k, v^{\prime}, u^{\prime}-q\right)$

Applications: Dividing in $\mathbb{Z} / N \mathbb{Z}$

Let $a, b \in \mathbb{Z} / N \mathbb{Z}$, one wants to compute a / b

- Assuming we know how to multiply, we just need to compute b^{-1}
- To do this, compute u, v s.t. $u b+v N=1=\operatorname{gcd}(b, N)$
- If $\operatorname{gcd}(b, N)>1, b$ is not invertible $\bmod N$ (why?)
- Then $u b=1-v N \Rightarrow u b=1 \bmod N \Rightarrow u=b^{-1}$

Exercise: use this algorithm to prove that $\mathbb{Z} / N \mathbb{Z}$ is a field iff N is prime

Back to Crypto: RSA

RSA (Rivest, Shamir, Adleman, 1977) in a nutshell: a family of "one-way permutations with trapdoor"

- Publicly define \mathcal{P} that everyone can compute
- Knowing \mathcal{P}, it is "hard" to compute \mathcal{P}^{-1} (even on a single point)
- There is a trapdoor associated w / \mathcal{P}
- Knowing the trapdoor, it is easy to compute \mathcal{P}^{-1} everywhere

RSA: how?

- Let p, q be two (large) prime numbers
- Let $N=p q$
- Any $0<x<N$ s.t. $\operatorname{gcd}(x, N)=1$ is invertible in $\mathbb{Z} / N \mathbb{Z}$
- Note that knowing $x \notin(\mathbb{Z} / N \mathbb{Z})^{\times} \Leftrightarrow$ knowing p and q
- Why?

Proposition: order of $(\mathbb{Z} / N \mathbb{Z})^{\times}$

Let N be as above, the order of the multiplicative group $(\mathbb{Z} / N \mathbb{Z})^{\times}$ is equal to $(p-1)(q-1)$. (More generally, it is equal to $\varphi(N)$)

- So for any $x \in(\mathbb{Z} / N \mathbb{Z})^{\times}, x^{k \varphi(N)+1}=x$

RSA: more on how

- Let e be s.t. $\operatorname{gcd}(e, \varphi(N))=1$; consider $\mathcal{P}: x \mapsto x^{e} \bmod N$
- \mathcal{P} is a permutation over $(\mathbb{Z} / N \mathbb{Z})^{\times}$
- Knowing e, N, it is easy to compute \mathcal{P}
- Knowing e, $\varphi(N)$, it is easy to compute d s.t. ed $=1$ $\bmod \varphi(N)$
- Knowing d, x^{e}, it is easy to compute $x=x^{\text {ed }}$
\Rightarrow We have a permutation with trapdoor, but how good is the latter?

RSA: how secure?

Knowing ed $=k \varphi(N)+1$, it is easy to find $\varphi(N)$ (admitted)
Knowing $N=p q, \varphi(N)=(p-1)(q-1)$, it is easy to find p and q

- $\varphi(N)=p q-(p+q)+1 ; p+q=-(\varphi(N)-N-1)$
- For any a, b, knowing $a b$ and $a+b$ allows to find a and b
- Consider the polynomial $(X-a)(X-b)=X^{2}-(a+b) X+a b$
- $\Delta=(a+b)^{2}-4 a b=(a-b)^{2}$
- $a=((a+b)+(a-b)) / 2$
\Rightarrow Knowing, N, e, d, it is easy to factor N, plus:
- e does (basically) not depend on N
\Rightarrow If it is easy to compute d from N, e, it is easy to factor N, and
- It is a hard problem to factor $N=p q$ when p, q are large random primes
BUT it might not be necessary to know d to (efficiently) invert \mathcal{P}

RSA for PKC

The objective: use RSA to build

- Public-key (asymmetric) encryption
- Can then be used for asymmetric key exchange
- Public-key signatures

These schemes will need to satisfy the usual security notions

- For encryption: IND-CPA/CCA ("semantic security")
- For signatures: EUF-CMA

IND-CCA for Public-Key encryption

IND-CCA for (Enc, Dec): An adversary cannot distinguish $\operatorname{Enc}\left(p k_{C}, 0\right)$ from $\operatorname{Enc}\left(p k_{C}, 1\right)$, when given (restricted) oracle access to $\operatorname{Dec}\left(s k_{C}, \cdot\right)$ oracle:

1 The Challenger chooses a key pair $\left(p k_{C}, s k_{C}\right)$, a random bit b, sends $c=\operatorname{Enc}\left(p k_{C}, b\right), p k_{c}$ to the Adversary
2 The Adversary may repeatedly submit queries $x_{i} \neq c$ to the Challenger
3 The Challenger answers a query with $\operatorname{Dec}\left(s_{C}, x_{i}\right) \in\{0,1, \perp\}$

- This assumes w.l.o.g. that the domain of Enc is $\{0,1\}$, and that decryption may fail
4 The Adversary tries to guess b

RSA Encryption: first attempt

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Define:

- $\operatorname{Enc}(p k=(N, e), m)=\mathcal{P}(m)=\left(m^{e} \bmod N\right)$
- $\operatorname{Dec}(s k=(N, e, d), c)=\mathcal{P}^{-1}(c)=\left(c^{d} \bmod N\right)$

Not randomized \Rightarrow fails miserably, not IND-CCA

- When receiving $c=\mathcal{P}(b)$, the Adversary compares with

$$
c_{0}=\mathcal{P}(0), c_{1}=\mathcal{P}(1)
$$

More issues with raw RSA

- If m, e are small, it may be that $m^{e} \bmod N=m^{e}$ (over the integers) \Rightarrow trivial to invert
- Example: N is of 2048 bits, $e=3, m$ is a one-bit challenge: adding 512 random bits of padding before encrypting does not provide IND-CCA security!
- Consider a broadcast setting where m is encrypted as $c_{i}=m^{3}$ $\bmod N_{i}, i \in[1,3]$. Suppose that $\forall i, m<N_{i}<c_{i}$. Using the CRT, one can reconstruct $m^{3} \bmod N_{1} N_{2} N_{3}=m^{3}$ and retrieve m.
- Even random padding might not prevent this attack, if too structured (Hastad, Coppersmith)

More issues with (semi-)raw RSA

A very useful result for analysing the security of RSA is due to Coppersmith (1996):

Finding small modular roots of univariate polynomials

Let P be a polynomial of degree k defined modulo N, then there is an efficient algorithm that computes its roots that are less than $N^{1 / k}$

- The complexity of the algorithm is polynomial in k (but w. a high degree)
- Example application: if $c=\left(2^{k} B+a\right)^{3} \bmod N$ is an RSA image, B is known and of size $2 / 3 \log (N)$, one can find a of size $k<1 / 3 \log (N)$ by solving $\left(2^{k} B+X\right)^{3}-c=0$ for X
- Other applications: in the previous slide; in slide $\# 13, \ldots$

Proper RSA-ENC

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Let $\mathrm{Pad}, \mathrm{Pad}^{-1}$ be a padding function and its inverse. Define:

- $\operatorname{Enc}(p k=(N, e), m)=\mathcal{P}(\operatorname{Pad}(m))=\left(\operatorname{Pad}(m)^{e} \bmod N\right)$
- $\operatorname{Dec}(s k=(N, e, d), c)=\operatorname{Pad}^{-1}\left(\mathcal{P}^{-1}(c)\right)=\operatorname{Pad}^{-1}\left(c^{d} \bmod N\right)$

Necessary conditions on Pad:

- It must be invertible
- It must be randomized (with a large-enough number of bits)
- For all $m, N, e, \operatorname{Pad}(m)^{e}$ must be larger than N

OAEP: A good padding function for RSA-ENC

OAEP: Optimal Asymmetric Encryption Padding (Bellare \& Rogaway, 1994):

- Let $k=\lfloor\log (N)\rfloor, \kappa$ be a security parameter
- Let $\mathcal{G}:\{0,1\}^{\kappa} \rightarrow\{0,1\}^{n}, \mathcal{H}:\{0,1\}^{n} \rightarrow\{0,1\}^{\kappa}$ be two hash functions
- Define $\operatorname{Pad}(x)$ as $\left(y_{L} \| y_{R}\right)=x \oplus \mathcal{G}(r) \| r \oplus \mathcal{H}(x \oplus \mathcal{G}(r))$, where $r \stackrel{\S}{\leftarrow}\{0,1\}^{\kappa}$
- One has $x=\operatorname{Pad}^{-1}\left(y_{L} \|_{y_{R}}\right)=y_{L} \oplus \mathcal{G}\left(y_{R} \oplus \mathcal{H}\left(y_{L}\right)\right)$

More on OAEP

- OAEP essentially uses a two-round Feistel structure
- To be instantiated, it requires two hash functions \mathcal{H} and \mathcal{G} with variable output size
- A possibility is to use a single XOF $\mathcal{X}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, such as SHAKE-128

OAEP: Why does it work (kind of)?

Intuitively, full knowledge of $\left(y_{L} \| y_{R}\right)$ is necessary to invert:

- If part of y_{L} is unknown, $\mathcal{H}\left(y_{L}\right)$, then $\mathcal{G}\left(y_{R} \oplus \mathcal{H}\left(y_{L}\right)\right.$ are uniformly random
- If part of y_{R} is unknown, $\mathcal{G}\left(y_{R} \oplus \mathcal{H}\left(y_{L}\right)\right)$ is uniformly random
- In both cases $\Rightarrow x$ is hidden by a "one-time-pad"

More formally, we would like a reduction of the form:
Breaking RSA-OAEP w. Adv. $\varepsilon \Rightarrow$ Inverting RSA w. Adv. $\approx \varepsilon$

OAEP woes

- The original proof that OWP-OAEP is IND-CCA (for any good OWP) (Bellare \& Rogaway, 1994) was incorrect
- Shoup showed that there can be no such proof (2001)
- But when OWP is RSA, then there is a proof (Shoup, 2001; Fujisaki \& al., 2000)!
- Exploits Coppersmith's algorithm!
- Not all the proofs are tight (e.g. Adv. $\varepsilon \Rightarrow$ Adv. ε^{2})
- Need large parameters to give a meaningful guarantee

What about RSA-SIG now?

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Define:

- $\operatorname{Sig}(s k=(N, e, d), m)=\mathcal{P}^{-1}(m)$
- $\operatorname{Ver}(p k=(N, e), \sigma, m)=\mathcal{P}(\sigma)==m$? T : \perp

Why this might work:

- Correctness: $\left(m^{d}\right)^{e} \equiv m \bmod N\left(\mathcal{P}^{-1} \circ \mathcal{P}=\mathcal{P} \circ \mathcal{P}^{-1}=\mathrm{Id}\right)$
- Security: Comes from the hardness of inverting \mathcal{P} w/o knowing $d \leadsto$ forging a signature for $m \Leftarrow$ compute $\mathcal{P}^{-1}(m)$

Raw RSA-SIG: That's no good!

- If $m \equiv m^{\prime} \bmod N$, then $\mathcal{P}^{-1}(m)=\mathcal{P}^{-1}\left(m^{\prime}\right) \Rightarrow$ trivial forgeries
- $\mathcal{P}^{-1}(m) \mathcal{P}^{-1}\left(m^{\prime}\right)=\left(m^{d}\right)\left(m^{\prime d}\right) \bmod N=\left(m m^{\prime}\right)^{d}$ $\bmod N=\mathcal{P}^{-1}\left(m m^{\prime}\right) \Rightarrow$ trivial forgeries over $[0, N-1]$

Again, some padding is necessary!

Proper RSA-SIG

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Let Pad be a padding function. Define:

- $\operatorname{Sig}(s k=(N, e, d), m)=\mathcal{P}^{-1}(\operatorname{Pad}(m))$
- $\operatorname{Ver}(p k=(N, e), \sigma, m)=\mathcal{P}(\sigma)==\operatorname{Pad}(m)$? T : \perp
- Pad does not need to be invertible
- It does not need to be randomized (tho this can help)

What padding functions for RSA-SIG?

Let $k=\lfloor\log (N)\rfloor$
Full-Domain Hash (FDH) (Bellare \& Rogaway; 1993):

- Let $\mathcal{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ be a hash function, $\operatorname{Pad}(m)=\mathcal{H}(m)$ PFDH (Coron, 2002):
- Let $\mathcal{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ be a hash function, $r \stackrel{\S}{\leftarrow}\{0,1\}^{n}$, $\operatorname{Pad}(m)=\mathcal{H}(m \| r)$
- r is not included in the padding per se, but must be transmitted along
- Both are pretty simple, both provable in the random oracle model (ROM)
- The proof is tighter for PFDH ("good" security is obtained for smaller N)
- \mathcal{H} can instantiated by a XOF

Another nice padding: PSS-R

PSS-R (Bellare \& Rogaway, 1996):

- Let $\lfloor\log (N)\rfloor=k=k_{0}+k_{1}+k_{2}, \mathcal{H}:\{0,1\}^{k-k_{1}} \rightarrow\{0,1\}^{k_{1}}$, $\mathcal{G}:\{0,1\}^{k_{1}} \rightarrow\{0,1\}^{k-k_{1}}$ be two hash functions, $r \stackrel{\S}{\leftarrow}\{0,1\}^{k_{0}}$
- Pad : $\{0,1\}^{k_{2}} \rightarrow\{0,1\}^{k}$ is defined by $\operatorname{Pad}(x)=\mathcal{H}(x \| r) \|(x \| r \oplus \mathcal{G}(\mathcal{H}(x \| r)))$
- If $|x|<k_{2}$, PSS-R is invertible (then, the message m does not need to be transmitted with the signature)
- Otherwise, e.g. compute $\operatorname{Pad}\left(x^{\prime}\right)$ where $x^{\prime}=\mathcal{I}(x)$, $\mathcal{I}:\{0,1\}^{*} \rightarrow\{0,1\}^{k_{2}}$ a hash function (then, k_{2} must be "large enough")

More on PSS-R

- In fact, PSS-R may also be used as padding for RSA-ENC (Coron \& al., 2002)!
- Notice the relative similarity between PSS-R and OAEP
- Both SIG and ENC cases are provably secure in the ROM
- In the specific case of RSA, same as OAEP

RSA, DH recap, comparison

Roughly, hardness of factoring, DLOG \Rightarrow Asymmetric key exchange, public-key signatures

- Factoring \leadsto RSA: One-way permutation w. trapdoor, can be used for both
- DLOG \leadsto DH, Schnorr/DSA/...: No permutation, but same functionalities

There are some differences, tho

Some DLOG schemes properties

- For key exchange, can change the secret every time \Rightarrow "forward secrecy"
- For signatures, good randomness is essential! (Otherwise it breaks)
- Picking a random exponent is easy
- Picking a good group is not completely staightforward
- Some active attacks are possible
- It is possible to "break entire groups" (e.g. \mathbb{F}_{p}^{\times})

Some RSA properties

- Secrets are fixed \Rightarrow a break can compromise a long history
- No randomness needed for signatures (e.g. basic FDH), randomness failures don't reveal the secret
- Generating parameters is somewhat hard
- But all of them are independent (in principle)

