
PKC Basics 2018–10–01 1/54

Security Architectures ’18
]

PKC Basics

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018–10–01

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

PKC Basics 2018–10–01 2/54

About this (small part of the) course

▸ (Re-) introducing a few public-key algorithms

▸ Illustrating the need for Public-key Infrastructures (PKIs)

▸ ⇒ Some classical crypto stuff (some overlap w/ CRY-ENG?)

▸ Main course by F. Autréau & J.-G. Dumas

PKC Basics 2018–10–01 3/54

Public-key algorithms

Some major examples:

▸ Asymmetric encryption (one key to encrypt, another to
decrypt), e.g. RSA (+ some randomized padding)

▸ Digital signature (one key to sign, another to verify), e.g. DSA

▸ Public-key key exchange, e.g. Diffie-Hellman

Note: RSA can be used to implement both a key-exchange and a
signature

PKC Basics 2018–10–01 4/54

Diffie-Hellman etc.

RSA etc.

PKC Basics 2018–10–01 5/54

First things first: Diffie-Hellman

A simple protocol:
▸ Let G = ⟨g⟩ be a cyclic finite group with a generator g

▸ Example: (Z/512Z,+), g = 1, ord(g) = 512
▸ Example: F×257, g = 3, ord(g) = 256
▸ Example: (F2[X]/X 8 +X 4 +X 3 +X 2 + 1)×, g = X ,

ord(g) = 255

▸ A picks a
$←Ð {0, . . . ,ord(g) − 1}, sends ga to B

▸ B picks b
$←Ð {0, . . . ,ord(g) − 1}, sends gb to A

▸ A computes (gb)a = gba = gab, sets k = KDF(gab)
▸ B computes (ga)b = gab, sets k = KDF(gab)

With KDF some key derivation function (e.g. a ∼ hash function)

PKC Basics 2018–10–01 6/54

Why this works?

Functionality

▸ A and B only need public information to perform the exchange

▸ They get the same k

⇒ Public-key key exchange

Security: necessary conditions

▸ Given g , ga, gb, it must be hard to compute gab

▸ k = KDF(gab) must be “random-looking” when a, b are
random

▸ There must be many possible values for k

PKC Basics 2018–10–01 7/54

Security focus

A necessary condition: computing discrete logarithms in G must
be “hard”

Discrete logarithm

Let G = ⟨g⟩ be a finite group of order N, the discrete logarithm of
h = ga, a ∈ {0, . . . ,N − 1} is equal to a

How hard is the “discrete logarithm problem” (DLP) for various
groups?

PKC Basics 2018–10–01 8/54

DLP hardness

Proposition

It is always possible to compute the discrete logarithm in a group
of order N in time O(

√
N)

So one must at least pick N s.t. 2log(N)/2 is large. But:

▸ (Z/nZ,+): DLP always easy (logarithm ≡ division)

▸ F×q : usually hard, not maximally hard (needs much less than√
N)

▸ E(Fq): usually maximally hard (needs about
√
N)

PKC Basics 2018–10–01 9/54

More on how to pick a group

If the order N of G is not prime, G has subgroups

▸ Let N = pN ′, then gp generates a group of order N ′

Proposition (Pohlig-Hellman)

It is possible to solve the DLP in G subgroup-by-subgroup

⇒ For the DLP to be hard, G must be of order N s.t. DLP is hard
in a subgroup of order p, the largest prime factor of N (But no
details)

PKC Basics 2018–10–01 10/54

Are we done? Not quite

▸ Hardness of the DLP cannot be “proven”, but a reasonable
assumption for some groups

▸ We also need g x to be random-looking (ditto)

But regardless, Diffie-Hellman as presented only protects againts
passive adversaries

⇒ Not very useful in practice

PKC Basics 2018–10–01 11/54

Diffie-Hellman with a man in the middle

▸ A sends ga to B
▸ C intercepts the message, sends g c to B

▸ B sends gb to A
▸ C intercepts the message, sends g c to A

▸ A and C share a key ka = KDF(gac)
▸ B and C share a key kb = KDF(gbc)
▸ Anytime A sends a message to B with key ka, C decrypts and

re-encrypts with kb (and vice-versa)

PKC Basics 2018–10–01 12/54

One way to solve this: signatures

A wants to be sure it is talking to B

▸ Find B’s public verification key for a signature algorithm

▸ Ask B to sign gb

▸ Only accept it if the signature is valid

Works well, but A needs to know B’s public key beforehand

⇒ We again have a bootstrapping issue

So are we back to square one?

PKC Basics 2018–10–01 13/54

Public-key infrastructures can help

Public keys still help compared to private ones:

▸ Possibly long term (v. have to be changed after a while
(although not a real limitation))

▸ Scales linearly w/ the number of participants (v.
quadratically)

▸ Trusting only one key is enough, if it signs all the ones you
need

PKC Basics 2018–10–01 14/54

Example: TLS certificates

The simple picture:

▸ Web browsers are pre-loaded with “certificates” (∼ public
keys) of certification authorities (CAs)

▸ CAs sign the certificates of websites using secure connections
(possibly using intermediaries)

▸ When connecting to a website, check the entire chain of
certificates

▸ If everything’s fine, use the website’s public key to
authenticate the exchange

More generally, we need a PKI!

PKC Basics 2018–10–01 15/54

So how do we sign?

Signature possibilities

▸ Use a discrete logarithm based protocol

▸ Or RSA

▸ But in both cases, also need a hash function!

PKC Basics 2018–10–01 16/54

Signatures: what?

Objectives of a signature algorithm:

▸ Given (SK,PK) a key pair

▸ message m + secret key SK↝ signature s = SigSK(m)
▸ message m + signature s + public key PK↝ verified message

VerPK(m, s)
Informal security objectives

▸ Given PK, it should be hard to find SK

▸ Given PK, it should be hard to forge signatures

▸ (Variant: given access to a signing oracle O
(SK,PK), it should

be hard to forge signatures)

▸ Formalised as Existential unforgeability under chosen-message
attacks (EUF-CMA)

PKC Basics 2018–10–01 17/54

EUF-CMA for Public-Key signatures

EUF-CMA for (Sig,Ver): An adversary cannot forge a valid
signature σ for a message m such that Ver(pkC , σ,m) succeeds,
when given (restricted) oracle access to Sig(skC , ⋅):

1 The Challenger chooses a pair (pkC , skC) and sends pkC to
the Adversary

2 The Adversary may repeatedly submit queries mi to the
Challenger

3 The Challenger answers a query with σi = Sig(skC ,mi)
4 The Adversary tries to forge a signature σf for a message

mf ≠i mi , s.t. Ver(pkC , σf ,mf) = ⊺

PKC Basics 2018–10–01 18/54

Related: interactive proof of identity

Objective of a proof of ID scheme:

▸ Publish public identification data α

▸ When challenged, prove knowledge of a secret related to α

Example of a one-time scheme:

1 Let H be a preimage-resistant hash function, R a large set

2 The prover draws x
$←ÐR, computes and publishes X =H(x)

3 When challenged, reveals x

Many-time variant:

1 Draw x
$←ÐR, compute and publish X =HN(x)

2 When challenged, reveal HN−1(x), reset X =HN−1(x)

PKC Basics 2018–10–01 19/54

A discrete-log based PoID scheme

∼Schnorr identification scheme

1 Let G = ⟨g⟩ be a group with a hard DLP

2 The prover draws x
$←ÐR, computes and publishes X = g x

3 When challenged; draws r , sends R = g r

4 The verifier picks c and sends it

5 The prover computes a = r + cx and sends it

6 The verifier checks that RX c = ga

This can be run many times, BUT r ’s should be random and never
repeat!

PKC Basics 2018–10–01 20/54

From PoID to signature

Differences between PoID and signatures:

▸ PoIDs are interactive (in the verification), signatures are not

▸ Signatures also involve a message

One major observation:

▸ If the prover can convince that it doesn’t control both R and
c , interaction is unnecessary

▸ (Otherwise, nothing is proved)

⇒ Fiat-Shamir transformation: generate c from R with a hash
function

PKC Basics 2018–10–01 21/54

Schnorr signatures

To sign a message m with the key (SK,PK) pair (x ,X = g x)

1 Pick r
$←ÐR and compute R = g r

2 Compute c =H(R,m)
3 Compute a = r + cx and output (c , a) as the signature of m

To verify a signature:

1 Compute R̂ = ga/X c = ga/g cx

2 Check that c =H(R̂,m)
Important: r must (again) be random and not repeat! (Why?)

PKC Basics 2018–10–01 22/54

Where are we with dlog?

If G = ⟨g⟩ is a prime-order group where the DLP is hard (on
average ≡ in the worst case), then:

▸ Can do asymmetric key exchange

▸ Can do public-key signatures

For signatures we also need

▸ Good hash functions

▸ Good pseudorandom number generation

PKC Basics 2018–10–01 23/54

Some comments on dlog attacks

When G ≈ F×p , the current dlog records are:

▸ ∣p∣ ≈ 768 bits (Kleinjung et al., 2017), using a Number Field
Sieve (NFS) algorithm
▸ Took about 5300 core years

▸ ∣p∣ ≈ 1024 bits for a trapdoored prime (Fried et al., 2017),
using a Special NFS (SNFS) algorithm
▸ Took about 385 core years

Note: it may be hard to decide if a prime is trapdoored

One nice (for an attacker) feature of (S)NFS:

▸ The largest part of the cost is a precomputation, then
computing individual dlogs is very fast

PKC Basics 2018–10–01 24/54

Some more comments on dlog: small subgroup attack

Consider a semi-static key exchange,

▸ Where one of ga or gb (say gb) is fixed

using ⟨g⟩ ⊂ F×p where F×p has many small subgroups

▸ Then B must check that “ĝ” sent by A is in the correct group

▸ Otherwise, if ĝb is in a small group of order N, a malicious A
can learn b mod N

▸ . . . Then b mod N ′, etc.

One way to easily prevent this: use p = 2q + 1, q a Sophie Germain
prime
⇒ Only a small subgroup of order 2 to check for in F×p

PKC Basics 2018–10–01 25/54

Diffie-Hellman etc.

RSA etc.

PKC Basics 2018–10–01 26/54

Back to basics

Greatest common divisor (GCD)

The greatest common divisor of two numbers a, b ∈ N is the largest
number k, noted gcd(a,b) s.t. a = km, b = km′ for some m, m′ ∈ N

Co-primality

Two integers a, b are called coprime if gcd(a,b) = 1

Examples:

▸ gcd(n,n) = gcd(n,0) = n for any n

▸ gcd(n,1) = 1 for any n

▸ gcd(n, kn) = n for any n

▸ gcd(p,q) = 1 for any two prime numbers p, q

▸ gcd(p,n) = 1 for any n < p

PKC Basics 2018–10–01 27/54

GCD computation

Given two integers, it is:

▸ Very important to be able to compute their gcd

▸ Very easy to do so (cool!)

↝
A nice recurrence:

▸ Let a, b ∈ N, a > b
▸ Then k = gcd(a,b) = gcd(b, a mod b)

▸ If a mod b = 0, then a = kb = qb⇒ gcd(a,b) = gcd(b,0) = b
▸ If a mod b = r , then a = km = qb + r , b = km′

▸ ⇒ km = qkm′ + r ⇒ k(m − qm′) = r ⇒ k divides r too!

PKC Basics 2018–10–01 28/54

Euclid’s algorithm

The previous recurrence leads to Euclid’s algorithm for gcd
computation

GCD computation (recursive)

Input: a, b < a
Output: gcd(a,b)

1 If b = 0, return a

2 Return gcd(b, a mod b)

In practice, iterative (variant) versions may be preferable

PKC Basics 2018–10–01 29/54

Extended Euclid

Let a, b, k = gcd(a,b)
▸ Then for any u, v ∈ Z,
ua + vb = ukm + vkm′ = k(um + vm′) = kw with w = um + vm′

▸ Of particular interest are any u, v s.t. um + vm′ = 1, then we
have ua + vb = k = gcd(a,b)

▸ One can easily compute such u, v by extending Euclid’s
algorithm

PKC Basics 2018–10–01 30/54

Extended Euclid (cont.)

Extended Euclid algorithm

Input: a, b < a
Output: k = gcd(a,b), u, v s.t. ua + vb = k

1 If b = 0, return (k = a,u = 1, v = 0) ▷ 1 × a + 0 × 0 = a

2 Set r = a mod b, q = a ÷ b ▷ r = a − qb

3 Let (k ,u′, v ′)← [gcd(b, r) ▷ u′b + v ′r = k = gcd(a,b)
▷ u′b + v ′(a − qb) = k
▷ b(u′ − q) + v ′a = k

4 Return (k, v ′,u′ − q)

PKC Basics 2018–10–01 31/54

Applications: Dividing in Z/NZ

Let a, b ∈ Z/NZ, one wants to compute a/b
▸ Assuming we know how to multiply, we just need to compute
b−1

▸ To do this, compute u, v s.t. ub + vN = 1 = gcd(b,N)
▸ If gcd(b,N) > 1, b is not invertible mod N (why?)

▸ Then ub = 1 − vN ⇒ ub = 1 mod N ⇒ u = b−1

Exercise: use this algorithm to prove that Z/NZ is a field iff N is
prime

PKC Basics 2018–10–01 32/54

Back to Crypto: RSA

RSA (Rivest, Shamir, Adleman, 1977) in a nutshell: a family of
“one-way permutations with trapdoor”

▸ Publicly define P that everyone can compute

▸ Knowing P, it is “hard” to compute P−1 (even on a single
point)

▸ There is a trapdoor associated w/ P
▸ Knowing the trapdoor, it is easy to compute P−1 everywhere

PKC Basics 2018–10–01 33/54

RSA: how?

▸ Let p, q be two (large) prime numbers

▸ Let N = pq
▸ Any 0 < x < N s.t. gcd(x ,N) = 1 is invertible in Z/NZ

▸ Note that knowing x ∉ (Z/NZ)× ⇔ knowing p and q
▸ Why?

Proposition: order of (Z/NZ)×
Let N be as above, the order of the multiplicative group (Z/NZ)×
is equal to (p − 1)(q − 1). (More generally, it is equal to ϕ(N))

▸ So for any x ∈ (Z/NZ)×, xk ϕ(N)+1 = x

PKC Basics 2018–10–01 34/54

RSA: more on how

▸ Let e be s.t. gcd(e, ϕ(N)) = 1; consider P ∶ x ↦ xe mod N

▸ P is a permutation over (Z/NZ)×

▸ Knowing e, N, it is easy to compute P
▸ Knowing e, ϕ(N), it is easy to compute d s.t. ed = 1

mod ϕ(N)
▸ Knowing d , xe , it is easy to compute x = xed

⇒ We have a permutation with trapdoor, but how good is the
latter?

PKC Basics 2018–10–01 35/54

RSA: how secure?

Knowing ed = k ϕ(N) + 1, it is easy to find ϕ(N) (admitted)

Knowing N = pq, ϕ(N) = (p − 1)(q − 1), it is easy to find p and q

▸ ϕ(N) = pq − (p + q) + 1; p + q = −(ϕ(N) −N − 1)
▸ For any a, b, knowing ab and a + b allows to find a and b

▸ Consider the polynomial (X − a)(X − b) = X 2 − (a + b)X + ab
▸ ∆ = (a + b)2 − 4ab = (a − b)2
▸ a = ((a + b) + (a − b))/2

⇒ Knowing, N, e, d , it is easy to factor N, plus:

▸ e does (basically) not depend on N

⇒ If it is easy to compute d from N, e, it is easy to factor N, and

▸ It is a hard problem to factor N = pq when p, q are large
random primes

BUT it might not be necessary to know d to (efficiently) invert P

PKC Basics 2018–10–01 36/54

RSA for PKC

The objective: use RSA to build
▸ Public-key (asymmetric) encryption

▸ Can then be used for asymmetric key exchange

▸ Public-key signatures

These schemes will need to satisfy the usual security notions

▸ For encryption: IND-CPA/CCA (“semantic security”)

▸ For signatures: EUF-CMA

PKC Basics 2018–10–01 37/54

IND-CCA for Public-Key encryption

IND-CCA for (Enc,Dec): An adversary cannot distinguish
Enc(pkC ,0) from Enc(pkC ,1), when given (restricted) oracle
access to Dec(skC , ⋅) oracle:

1 The Challenger chooses a key pair (pkC , skC), a random bit
b, sends c = Enc(pkC ,b), pkC to the Adversary

2 The Adversary may repeatedly submit queries xi ≠ c to the
Challenger

3 The Challenger answers a query with Dec(skC , xi) ∈ {0,1,�}
▸ This assumes w.l.o.g. that the domain of Enc is {0,1}, and

that decryption may fail

4 The Adversary tries to guess b

PKC Basics 2018–10–01 38/54

RSA Encryption: first attempt

Let P,P−1 be RSA permutations with parameters N, e, d . Define:

▸ Enc(pk = (N, e),m) = P(m) = (me mod N)
▸ Dec(sk = (N, e,d), c) = P−1(c) = (cd mod N)

Not randomized ⇒ fails miserably, not IND-CCA

▸ When receiving c = P(b), the Adversary compares with
c0 = P(0), c1 = P(1)

PKC Basics 2018–10–01 39/54

More issues with raw RSA

▸ If m, e are small, it may be that me mod N = me (over the
integers) ⇒ trivial to invert
▸ Example: N is of 2048 bits, e = 3, m is a one-bit challenge:

adding 512 random bits of padding before encrypting does not
provide IND-CCA security!

▸ Consider a broadcast setting where m is encrypted as ci = m3

mod Ni , i ∈ [1,3]. Suppose that ∀i , m < Ni < ci . Using the
CRT, one can reconstruct m3 mod N1N2N3 = m3 and retrieve
m.
▸ Even random padding might not prevent this attack, if too

structured (Hastad, Coppersmith)

PKC Basics 2018–10–01 40/54

More issues with (semi-)raw RSA

A very useful result for analysing the security of RSA is due to
Coppersmith (1996):

Finding small modular roots of univariate polynomials

Let P be a polynomial of degree k defined modulo N, then there is
an efficient algorithm that computes its roots that are less than
N1/k

▸ The complexity of the algorithm is polynomial in k (but w. a
high degree)

▸ Example application: if c = (2kB + a)3 mod N is an RSA
image, B is known and of size 2/3 log(N), one can find a of
size k < 1/3 log(N) by solving (2kB +X)3 − c = 0 for X

▸ Other applications: in the previous slide; in slide #13, ...

PKC Basics 2018–10–01 41/54

Proper RSA-ENC

Let P,P−1 be RSA permutations with parameters N, e, d . Let
Pad, Pad−1 be a padding function and its inverse. Define:

▸ Enc(pk = (N, e),m) = P(Pad(m)) = (Pad(m)e mod N)
▸ Dec(sk = (N, e,d), c) = Pad−1(P−1(c)) = Pad−1(cd mod N)

Necessary conditions on Pad:

▸ It must be invertible

▸ It must be randomized (with a large-enough number of bits)

▸ For all m, N, e, Pad(m)e must be larger than N

PKC Basics 2018–10–01 42/54

OAEP: A good padding function for RSA-ENC

OAEP: Optimal Asymmetric Encryption Padding (Bellare &
Rogaway, 1994):

▸ Let k = ⌊log(N)⌋, κ be a security parameter

▸ Let G ∶ {0,1}κ → {0,1}n, H ∶ {0,1}n → {0,1}κ be two hash
functions

▸ Define Pad(x) as (yL∣∣yR) = x ⊕ G(r)∣∣r ⊕H(x ⊕ G(r)), where

r
$←Ð {0,1}κ

▸ One has x = Pad−1(yL∣∣yR) = yL ⊕ G(yR ⊕H(yL))

PKC Basics 2018–10–01 43/54

More on OAEP

▸ OAEP essentially uses a two-round Feistel structure

▸ To be instantiated, it requires two hash functions H and G
with variable output size

▸ A possibility is to use a single XOF X ∶ {0,1}∗ → {0,1}∗, such
as SHAKE-128

PKC Basics 2018–10–01 44/54

OAEP: Why does it work (kind of)?

Intuitively, full knowledge of (yL∣∣yR) is necessary to invert:

▸ If part of yL is unknown, H(yL), then G(yR ⊕H(yL) are
uniformly random

▸ If part of yR is unknown, G(yR ⊕H(yL)) is uniformly random

▸ In both cases ⇒ x is hidden by a “one-time-pad”

More formally, we would like a reduction of the form:

Breaking RSA-OAEP w. Adv. ε⇒ Inverting RSA w. Adv. ≈ ε

PKC Basics 2018–10–01 45/54

OAEP woes

▸ The original proof that OWP-OAEP is IND-CCA (for any
good OWP) (Bellare & Rogaway, 1994) was incorrect

▸ Shoup showed that there can be no such proof (2001)
▸ But when OWP is RSA, then there is a proof (Shoup, 2001;

Fujisaki & al., 2000)!
▸ Exploits Coppersmith’s algorithm!

▸ Not all the proofs are tight (e.g. Adv. ε ⇒ Adv. ε2)
▸ Need large parameters to give a meaningful guarantee

PKC Basics 2018–10–01 46/54

What about RSA-SIG now?

Let P,P−1 be RSA permutations with parameters N, e, d . Define:

▸ Sig(sk = (N, e,d),m) = P−1(m)
▸ Ver(pk = (N, e), σ,m) = P(σ) == m ? ⊺ : �

Why this might work:

▸ Correctness: (md)e ≡ m mod N (P−1 ○P = P ○P−1 = Id)
▸ Security: Comes from the hardness of inverting P w/o

knowing d ↝ forging a signature for m ⇐ compute P−1(m)

PKC Basics 2018–10–01 47/54

Raw RSA-SIG: That’s no good!

▸ If m ≡ m′ mod N, then P−1(m) = P−1(m′) ⇒ trivial forgeries

▸ P−1(m)P−1(m′) = (md)(m′d) mod N = (mm′)d
mod N = P−1(mm′) ⇒ trivial forgeries over [0,N − 1]

Again, some padding is necessary!

PKC Basics 2018–10–01 48/54

Proper RSA-SIG

Let P,P−1 be RSA permutations with parameters N, e, d . Let
Pad be a padding function. Define:

▸ Sig(sk = (N, e,d),m) = P−1(Pad(m))
▸ Ver(pk = (N, e), σ,m) = P(σ) == Pad(m) ? ⊺ : �

▸ Pad does not need to be invertible

▸ It does not need to be randomized (tho this can help)

PKC Basics 2018–10–01 49/54

What padding functions for RSA-SIG?

Let k = ⌊log(N)⌋
Full-Domain Hash (FDH) (Bellare & Rogaway; 1993):

▸ Let H ∶ {0,1}∗ → {0,1}k be a hash function, Pad(m) =H(m)
PFDH (Coron, 2002):

▸ Let H ∶ {0,1}∗ → {0,1}k be a hash function, r
$←Ð {0,1}n,

Pad(m) =H(m∣∣r)
▸ r is not included in the padding per se, but must be

transmitted along

▸ Both are pretty simple, both provable in the random oracle
model (ROM)

▸ The proof is tighter for PFDH (“good” security is obtained for
smaller N)

▸ H can instantiated by a XOF

PKC Basics 2018–10–01 50/54

Another nice padding: PSS-R

PSS-R (Bellare & Rogaway, 1996):

▸ Let ⌊log(N)⌋ = k = k0 + k1 + k2, H ∶ {0,1}k−k1 → {0,1}k1 ,

G ∶ {0,1}k1 → {0,1}k−k1 be two hash functions, r
$←Ð {0,1}k0

▸ Pad ∶ {0,1}k2 → {0,1}k is defined by
Pad(x) =H(x ∣∣r)∣∣(x ∣∣r ⊕ G(H(x ∣∣r)))

▸ If ∣x ∣ < k2, PSS-R is invertible (then, the message m does not
need to be transmitted with the signature)

▸ Otherwise, e.g. compute Pad(x ′) where x ′ = I(x),
I ∶ {0,1}∗ → {0,1}k2 a hash function (then, k2 must be “large
enough”)

PKC Basics 2018–10–01 51/54

More on PSS-R

▸ In fact, PSS-R may also be used as padding for RSA-ENC
(Coron & al., 2002)!
▸ Notice the relative similarity between PSS-R and OAEP

▸ Both SIG and ENC cases are provably secure in the ROM
▸ In the specific case of RSA, same as OAEP

PKC Basics 2018–10–01 52/54

RSA, DH recap, comparison

Roughly, hardness of factoring, DLOG ⇒ Asymmetric key
exchange, public-key signatures

▸ Factoring ↝ RSA: One-way permutation w. trapdoor, can be
used for both

▸ DLOG ↝ DH, Schnorr/DSA/...: No permutation, but same
functionalities

There are some differences, tho

PKC Basics 2018–10–01 53/54

Some DLOG schemes properties

▸ For key exchange, can change the secret every time ⇒
“forward secrecy”

▸ For signatures, good randomness is essential! (Otherwise it
breaks)

▸ Picking a random exponent is easy

▸ Picking a good group is not completely staightforward

▸ Some active attacks are possible

▸ It is possible to “break entire groups” (e.g. F×p)

PKC Basics 2018–10–01 54/54

Some RSA properties

▸ Secrets are fixed ⇒ a break can compromise a long history

▸ No randomness needed for signatures (e.g. basic FDH),
randomness failures don’t reveal the secret

▸ Generating parameters is somewhat hard

▸ But all of them are independent (in principle)

	Diffie-Hellman etc.
	RSA etc.

