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Abstract

We present improvements made on SIDAN, an intrusion detection system working
at the software level. The operating principle of SIDAN consists in statically computing
invariant properties of the targeted programs and in generating an instrumentation to
check those properties at runtime, in order to detect attacks. More precisely, it focuses
on invariants involving the values of variables of the program. It checks these invariants
when calling functions.

We present improvements on the existing invariants used by SIDAN and propose
new invariants as well. We also describe how these have been implemented in SIDAN
by using the Frama-C framework, and how they could improve its attack detection ca-
pabilities.

Keywords Intrusion detection, software hardening, executable assertions, static analyses, invari-

ants, Frama-C, SIDAN.

1 Introduction

This reports presents a recent work on SIDAN [Dem11], an intrusion detection system that
operates at the software level. The objective of such systems is to devise means of detect-
ing attacks on a single, clearly identified software. Typical software that may be protected
are Web or SSH servers; these are attractive targets, as they are often reachable from any
machine connected to the Internet.

The rationale behind software intrusion detection is trying to prevent the attackers of
getting an entry point in a machine (or even in a broader information system) by detecting
when the possible entry points themselves are under attack. Complementary approaches
consist in trying to detect attacks at a broader level —for instance at the network level. We
will however not consider these other approaches in this work.

Several ways of designing a software intrusion detection system are possible. One is to
consider the software from an external point of view; a popular approach is to analyse its
system call traces and to try detecting attacks from unusual behaviours.

Another common approach is to do software hardening; one tries to instrument pro-
grams, for instance with a series of checks, in order to detect attacks from inside the soft-
ware. SIDAN and the systems to which it is the closest belong to this category.

The essence of the hardening performed by SIDAN is to verify invariant properties on
the state of the software. Our work consisted in improving the invariants used by SIDAN,
and in designing and implementing new ones.

We start this report by exposing the main motivations for software hardening in the con-
text of intrusion detection in section 2. We then describe some works related to ours in sec-
tion 3, and the approach used in SIDAN in section 4. We talk about more specific points
of SIDAN in section 5, where we also expose the contributions of our work in some details.
Implementation issues are discussed in section 6, and the evaluation of our system and of
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how it compares to the earlier work on SIDAN is described in section 7. We also give a quick
tutorial to SIDAN in section 8. We finish this report by outlining a few possible directions
for future work in section 9 and by concluding in section 10.

2 Motivation

In this short section, we present general concepts and motivations for a few types of soft-
ware hardening methods. We show how various sorts of analyses can help to improve the
security of a program at runtime.

The section 3 will detail how works related to ours concretely implement these methods.

2.1 Control flow monitoring

When one is interested in software security, and more precisely in detecting attacks on run-
ning programs, a quite natural idea is to consider how the running program behaves with
respect to its theoretical control flow graph. That is, we would like to detect when a control
flow transfer that is not possibly achievable from the source code of the program is occur-
ring.

For instance, if we consider the small C-like program in figure 1:

1: x = 3;

2: y = 0;

3: while (x > 0) {

4: y = y + 1;

5: x = x - 1;}

Figure 1: A tiny program to illustrate control flow monitoring

It is quite clear in figure 1 that the instructions labeled (1, 2, 3, 4, 5) may be executed in
this order, whereas an execution of the instructions in order (4, 5, 2, 1, 3) is obviously not
possible given the semantics of the source code. If we were to witness the latter order of ex-
ecution, it would surely indicate that some problem occurred at some point of the execution
(maybe a crazy program counter?). From this observation, we hope that we would be able
to detect a part of illegal executions of a software simply by checking that it is following a
theoretically possible control flow.

In the specific context of software security —when one wishes to detect intentionally il-
legal executions (i.e., attacks)— it is quite relevant to monitor the control flow of a program;
it is widespread for attacks to inject malicious code in a running software, and then to sub-
vert its control flow to execute the injected code instead of the original1. The injected code
cannot a priori be executed without violating the control flow (e.g., the control flow transfer
needed to start running it may not be legal in the first place), and we may therefore hope to
detect these sorts of attacks by checking the validity of the control flow at execution.

1Categories of such attacks include buffer overflow, return to libc, and return-oriented programming attacks.
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Actual methods that monitor the control flow are, e.g., [ABEL05a] and [GRSRV03] (and
[KBA02] in some respect), presented in section 3.

2.2 Data flow monitoring

Checking that a program executes along a theoretically possible control flow is a first step
towards detecting erroneous executions, but it is not quite enough. It is indeed possible to
subvert a program execution without changing its control flow. We illustrate this with the
help of the (rather unrealistic) toy program of figure 2.

1: authorized = auth_user();

2: ask_info_to_user();

3: if (authorized) {

4: serve_user();} else {

5: exit(AUTH_ERROR);}

Figure 2: A tiny program to illustrate data flow monitoring

We assume that the variable authorized in the program of figure 2 is only modified at the
instruction (1). Now if an attacker were able to modify this variable by exploiting a security
hole in the function ask_info_to_user, he could successfully be served as an authenticated
user at the instruction (4), without needing a proper authentication at instruction (1). By
doing so, an attacker would still maintain the valid control flow (1, 2, 3, 4) and his attack
would therefore pass unnoticed by the control flow monitoring of the previous section.

The objective of data flow monitoring is to make sure that a variable may only be mod-
ified from a location in the program where this would be expected, given the source code.
In the example of figure 2, such a monitoring would foil the attack we have outlined, as this
one needs changing a variable from an illegal location.

Such attacks (and hence protection against them) are relevant in a security context, as
a way to exploit security holes is precisely to overwrite arbitrary data in a program (quite
often, this is not supposed to happen given the source code), as it is discussed, e.g., in
[CXS+05].

In section 3, we present [CCH06], which aims at implementing data flow monitoring.

2.3 Monitoring the value of variables

The last approach we present here is the one that was used in this work. It can be seen as
a variation of data flow monitoring in the sense that it also focuses on the integrity of data
and ignores control flow issues. The major difference is that it does not consider the data
flow, but the value of the data themselves. That is, it does not detect the illegal updates of
variables, but the fact that variables hold values that could not possibly have resulted from
the source code of the program. For instance, let us consider the program of figure 3

Suppose that the variable arr is an array of size 32 and that the variable i is not mod-
ified in function ask_info_to_user; therefore, we can assert that the value of i at instruc-
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1: for (i = 0; i < 32; i++) {

2: babar = ask_info_to_user();

3: arr[i] = babar;}

Figure 3: A tiny program to illustrate value monitoring

tion (3) belongs to the interval [0,31]. Now let us imagine that a vulnerability in function
ask_info_to_user enabled an attacker to modify the value of i: this could allow him to per-
form illegal writes in the memory at instruction (3). However, such a modification could be
detected by the very fact that i does not hold a theoretically possible value at this point.

The relevance of this approach comes from the fact that concrete attacks, when illegally
modifying the value of data, often change them to values that could not be produced by the
original code, as this is seen again in [CXS+05].

The works of [Dem11] and [LLHT11], and more generally all of this report follow this
approach.

3 Related work

This section expands on the motivations presented in section 2 and presents concrete ex-
amples of analyses and of their use to improve software security and safety.

3.1 Control flow methods

Unlike for some of the other approaches that we will discuss in this section, it is rather easy
to compute properties on the control flow of a program. The methods that we will overview
basically rely on compilation techniques to compute control flow graphs.

Hence, the contributions of these methods consist mainly in how to use such graphs to
check the validity of a control flow even in the presence of faults or attacks, and to reflect
on what security it provides; not in how to compute these graphs in the first place.

We recall that a control flow graph is an oriented graph defining possible transitions
between basic blocks. A basic block is a sequence of instructions in which no control flow
transfer occurs: no execution of the program will lead to a jump to or from the middle of a
basic block; any such transfer must occur at the beginning or at the end of a block.

We show an example of a simple program and of its corresponding control flow graph
in figure 4 (in this example, the basic blocks are just made of one instruction, and are thus
referred to by their instruction number in the graph).

Computing the exact control flow graph of a structured imperative program is always
possible when its source code is available (and when it does not use dynamically specified
functions) [AP02]. However, this may not be the case when it is computed directly from
binary code.
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1: if(c1) {

2: while(c2) {

3: if(c3)

4: funk1();

else

5: funk2();}}

6: funk3();

1

2

6 3

4 5

Figure 4: A simple program and its control flow graph

3.1.1 Control flow monitoring for program safety

We now present the works of [GRSRV03] and [VA06]. Although developed to increase pro-
gram safety and not program security2 they are quite similar in spirit to security methods,
and we think it is therefore relevant to mention them as well.

There is however a sizable difference between methods for safety and security when the
“attack” or “fault” model is considered. In the case of program safety, we tend to assume
(this is the case in [GRSRV03] and [VA06]) that faults occurring in the memory are not a
concern, because they may be corrected by the use of memory featuring error correcting
codes. On the contrary, faults occurring in the registers —and in particular in the program
counter— are what needs to be detected, and they are the main concern of these methods.

In the case of program security, the “faults” being intentional, error correction is not
of any use to protect the memory, and it is therefore considered that it can be arbitrarily
modified. Conversely, registers might be assumed to be safe. We will consider the attack
models in more details when discussing methods for software security.

The work from [GRSRV03] consists in defining an efficient way to instrument C pro-
grams3 to monitor their control flows. A control flow graph of the target program is com-
puted, and the entry and exit points of its basic blocks are instrumented so as to ensure
that:

2That is, these methods aim at detecting accidental execution faults, whereas this work is rather concerned
with intentional attacks.

3The programs’ sources need to be available for the approach to be applicable.
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1. illegal transitions between blocks are detected (a transition is illegal either if it links to
blocks without an edge in the control flow graph, either if it occurs from or towards
the middle of a block);

2. the instrumentation has a limited impact on program performance (in terms of exe-
cution time and memory consumption).

The instrumentation process uses two phases. The first one is to find the basic blocks
and to give each of them a unique identifier; this is done during the compilation of the pro-
gram. The second phase is to insert the necessary tests to achieve the objectives previously
stated. These tests make use of a global variable that plays the role of a witness for the
control flow, and that is updated at every new block transition. Then, they simply consist
in checking at the start of, say block A, that the previously executed block is indeed a valid
predecessor of A; and in checking at the end of the block that we are still executing A.

The second test is useful to detect control flow transitions occurring in the middle of a
block. An example of such a transition is illustrated in figure 5. Also in figure 5 however,
is an example of a series of illegal transitions that cannot be detected by this method: the
checks inserted in [GRSRV03] being only at the limits of blocks: it is not possible to notice
if one jumps to the middle of a block, and then back to the middle of the original block.

OK
Illegal
jump #1

Error

OK

OK

Illegal
jump #2

Legal
jump

Illegal
jump #1

Figure 5: Illegal transitions in the control flow, detected (left) and unnoticed (right)

It should be noticed that the instrumentation must itself resist to faults for the checks
to be reliable. We do not detail here how this is achieved, though.

The evaluation of this method by the authors of [GRSRV03] consists in a fault injection
campaign, where a small number of programs were executed in an artificial environment
creating a large number of faults on the control flow, in a controlled fashion. The results
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show that this instrumentation is efficient, detecting approximately 20 to 35% of the in-
jected faults that would otherwise go unnoticed. However, the execution overhead is a 1
to 3.5 multiplier on execution time, and a 1 to 5 multiplier on memory consumption; this
is not so reasonable in a context of software security where we expect the overhead to be
modest.

The work presented in [VA06] is quite similar from the one of [GRSRV03], as its objec-
tives and techniques are pretty much the same. However, it introduces innovations that
make the tests more efficient, hence decreasing the overhead.

The improvements presented in [VA06] come from the introduction of the notion of
basic blocks “networks”, defined as sets of blocks with common predecessors. The blocks
of a same network will all have identifiers which share a common prefix that is computed
from the possible transitions between blocks of different networks. Another improvement
comes from the idea of distinguishing the blocks with more than one predecessor4 from the
others, and to instrument the two sorts differently.

These improvements permit to decrease the overhead from the one of [GRSRV03], with
a detection capacity that remains basically the same.

3.1.2 Control flow monitoring for program security

We now present the works from [ABEL05a] and [ABEL05b], which use the verification of the
integrity of the control flow of a program from a security perspective. This approach is very
similar to the one of the works of [GRSRV03] and [VA06] from above, as the integrity of the
control flow is also verified thanks to assertions inserted at the limit of the basic blocks of
the control flow graph.

There is however a range of practical differences between these works. The method
from [ABEL05a] does not need the programs’ sources to work, as the control flow graphs
of the programs are directly computed from executable binaries for x86 processors5. The
instrumentation of the basic blocks is also performed by binary rewriting, directly on the
executable files. Finally, the assertions themselves need not to be as complex as the ones of
[GRSRV03] or [VA06], as the attack model is different.

The result of these differences is a reduced overhead at execution, averaging 20% of time
increase. Obviously, it also permits to instrument programs for which the source code is not
available.

Yet, the main interest of this work is maybe the formal reasoning on the detection power
of this instrumentation, given a well-defined attack model. It also shows how enforcing
control flow integrity allows one to efficiently build other components useful for software
security. These are the points that we discuss now.

4More precisely, we ask from these blocks with multiple predecessors to have at least one predecessor with
more than one successor.

5The control flow graph that is obtained in this case is a conservative approximation of what the real graph
may be, as it is computed from the binary code of the programs (and may thus need to deal with addresses of
jumps or function calls that are only dynamically specified, or even worse, with self-modifying programs).
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Formal study of instrumentation for control flow integrity The relevance of enforcing
control flow integrity and of the methods used to achieve it are rigorously discussed in
[ABEL05b]. The authors define a structured operational semantics for a simplified machine
code in order to express the normal behaviour of a program and the power of an attacker.

In particular, an attacker is defined as capable of arbitrarily modifying the memory of
the data of a running program and the content of a subset of registers. However, he may not
change the value of the program counter, the content of the code memory of the program,
and the content of a set of distinguished registers (of the number of three). Moreover, it is
assumed that the data of a program may not be executed instead of original code (support
for non-executable data is now available on some architectures [ABEL05b]).

Under these conditions, the authors prove by induction on the instructions of the sim-
plified machine code that the checks that are placed in the limits of the basic blocks indeed
permit to detect violations of the control flow, given a generic formal definition for the con-
trol flow graph.

The assumptions made in this work being reasonable, it therefore gives good guarantees
on the relevance of the tests they use (which are the same as the ones used in the concrete
implementation [ABEL05a]) —even if the proofs were made by using a pseudo-code instead
of x86 machine code.

Constructions built upon control flow integrity A major interest of enforcing control flow
integrity is that —by definition— it allows to detect when code that ought to be executed
is not. Hence, it ensures that any instrumentation code that is added to a program (e.g., in
the form of tests) will either be executed, either trigger an alarm if an attacker successfully
bypasses them (because this would mean that he violated the control flow at some point).

As it is explained in the work of [ABEL05a], this allows to perform additional verifica-
tions of security-related properties on the programs in conjunction with control flow in-
tegrity, thereby improving the whole security of the program.

A first example is the implementation of SMACs (short for software memory access con-
trol), which allow to build memory zones that are only accessible from specific locations in
the program (expressed, e.g., as functions or instructions...). Such a guarantee is interesting
for security as it may for instance ensure that hard-coded data in a program and used, e.g.,
for security verification purposes may not be illegally tampered with. More precisely, the
enforcement of control flow integrity eases the implementation of a SMAC by limiting the
number of necessary tests thanks to the guaranteed absence of time of check to time of use
problems6.

Another example is how to efficiently implement a (P)SCS (short for (protected) shadow
call stack7). This allows to define a security policy on the control flow that is even more
precise than the one resulting on control flow integrity enforcement, as it permits to reason
on quantitative and qualitative relationships between different function calls (e.g.: when

6A time of check to time of use problem occurs when some data was modified between the moment where it
had been checked as valid and the moment where it was actually used.

7A protected shadow call stack is a copy of the stack that mirrors the real program stack and on which prop-
erties may be verified, as it is protected from unauthorized modifications.
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function foo is called, function bar has been called exactly twice as much as function babar).
The idea of the implementation is again to ensure that the memory segment containing the
shadow call stack may only be modified by the part of the code responsible for its update.

3.1.3 Control flow monitoring (and various policy checking) with program shepherding

We now turn our attention to the work from [KBA02], which presents a system designed to
supervise the execution of a program and in other things to constraint its control flow so
that it abides by configurable security policies.

This system is not unlike the previous works we presented, but its concrete implemen-
tation is quite different as it is based on efficient code emulation, rather than direct pro-
gram instrumentation (at the source or binary level). It should also be noted that it does
not provide as strict guarantees on the integrity of the control flow as does the work of,
e.g., [ABEL05a]; this comes in part from the fact that it entrusts the user with defining the
security policies himself, and therefore does not systematically check that a control flow
transfer is valid according to the control flow graph (which by the way is not computed in
this method).

This method also offers more than strict control flow checking, as it allows limited rea-
soning on the values of the arguments of system calls (as we will see shortly). Basically, the
objectives of this work are to define and implement three techniques that may then be used
to express custom security policies. These three building blocks are:

1. restricting code execution in function of its origin by, e.g., deciding if dynamically
loaded or dynamically generated code may be executed;

2. restricting control flow transfer, like for instance limiting the calls to library functions
from specific locations in the code, or simply ensuring that a function call returns right
after when it was called;

3. inserting executable assertions that may not be circumvented. This building block is
in fact used to implement the two previous ones, and more generally it is useful for
any security instrumentation that relies on executable tests.

The system presented in this work permits to define generic policies (like, e.g., stating
that an indirect function call8 may only target read-only memory) and policies specific to a
given function or system call as well.

For instance, a user may wish to define a policy forbidding the exec system call to take
any argument that is not hard-coded, or to forbid open to allow writing to sensitive files
specified in the policy (e.g., /etc/passwd). Thus, even if an attacker successfully subverts a
program running with administrator rights, he may still be unable to actually modify sensi-
tive files or execute arbitrary code on the machine.

The implementation of these building blocks is done by executing the unmodified pro-

8A function call is indirect when the identity of the function is not known at the time of compilation.
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grams through a “dynamic optimizer”9, and to dynamically perform the tests dictated by
the security policy.

It is always possible to run the programs without checking any security policy whatso-
ever (i.e., running the program through the bare dynamic optimizer), which means that this
method could quite neatly be integrated in a general context, for instance at the level of the
operating system.

As quite everything in the implementation is dynamic, the security policies could be
defined and updated cheaply, all along the life of the system. This is more flexible than
the other methods presented in this report, that need the programs to be recompiled or
statically analysed to be instrumented. Finally, when one considers performance overhead,
the authors of [KBA02] notice an average time and memory overhead of 10%, although it
may be close to 100% in some cases.

The authors do not define a precise attack model as do the ones of [ABEL05a], against
which their implementation is proved to resist. However, they do provide a few arguments
to explain why their system in itself may not be attacked (hence ensuring that the security
policies defined by the user are actually enforced).

The first argument is that the control flow monitoring features of the dynamic optimizer
on which they base their implementation guarantee by construction that non-circumventable
tests are really possible. The second argument is that protecting the data used by the sys-
tem (for instance to store the security policies) can be done by a combination of defining
appropriate read & write rights for the pages where these data are located, and of non-
circumventable checks that make sure that these rights are not illegally modified.

3.1.4 Limits of control flow monitoring

As this was discussed earlier in section 2, it is possible to perform an attack on a program
even when its control flow is not altered. This was shown in the work of [CXS+05] that
presented concrete attacks on real-life software (like, e.g., the OpenSSH server) that did not
need modifications of the control flow. This is part of the motivation for researching new
techniques that would allow to detect other attacks than the ones modifying the control
flow of a program.

However, one should not hastily conclude that enforcing control flow integrity is useless
as it still permits to detect a lot of potential attacks. Moreover, as it was already outlined sev-
eral times, these methods are very useful as building blocks for implementing other security
mechanisms.

3.2 Data flow methods

We will now present methods based on properties of the data flow of a program.

9A dynamic optimizer tries to (efficiently) run unmodified native code in order to find opportunities to im-
prove its performance. It may also allow to profile and to dynamically instrument the code, which is what we
are most interested in in our context.
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3.2.1 Data flow integrity for intrusion detection

We present the work of [CCH06] which aims at preserving the data flow integrity of a pro-
gram by inserting suitable tests in the source code. What is called data flow integrity (or
integrity of the data flow graph) in this case is based on reaching definition analyses, which
come from the compilers field [AP02]. A reaching analysis defines the notion of define and
use relationships between variables (or memory locations) and instructions in the program.

In more details, one says that an instruction writing in a variable (or more generally in a
memory location), say variable babar, defines the value of babar, and an instruction reading
its content uses the value of babar. What the reaching definition analysis does is computing
a superset of the instructions that may define the value of a variable for each instruction
where it is used. It is a superset and not the exact set of such instructions because, like
many static analyses, this one is approximate [AP02].

However, the fact that it includes all the real instructions means that it is sound. This
soundness is interesting as it permits to build a detection system with no false positives;
even if false negatives may still occur due to the imprecision of the analysis. We give an
imaginary example of what this analysis may compute with the help of the program in fig-
ure 6.

1: x = 0;

2: for (i = 0; i < 30; i++) {

3: x = x + 2 * i;

4: if (x % 2) {

5: x = x + 1;}}

Figure 6: A tiny program to illustrate reaching definition analysis

In the program of figure 6, the instructions that may define the value of variable x when
it is used at instruction (3) are instruction (1) and instruction (3). The soundness of the
reaching definition analysis guarantees that both instructions will belong to the set it com-
putes. However, the analysis being imprecise, one could imagine10 that it is not able to
determine that instruction (5) may never define the value of x at instruction (3), and thus
include it in the set as well.

The idea used in the work of [CCH06] is to ensure at runtime that when a variable is
used, it was last modified from a point in the program that may theoretically do so, accord-
ing to its data flow graph. If this is not the case, it necessarily means that an error occurred
at some point.

This idea is implemented by the authors of [CCH06] by using a compilation framework
for C programs. This framework allows both to implement the reaching analysis and to gen-
erate the instrumentation that enforces data flow integrity. This instrumentation consists in
keeping a big table indexed by memory location that is updated each time there is a write to

10We did not actually perform a reaching definition analysis in this case, so we only make this hypothesis for
illustration purposes.
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the memory, and that checks the integrity of the data flow graph when a read is performed.
This is shown in an abstract way in figure 7.

instruction i: a ← b

@a ← last 
modified @ 
instr. i

@b : last 
modified @ 
instr. j

update

assert @b ∈ {j, k, l} verification[
.....

Figure 7: Enforcing data flow integrity around a read & write instruction

A series of optimizations is also described by the authors to make the instrumentation
more efficient, like for instance keeping only one entry in the table for equivalent variables
(ones with the same superset of possible locations where they may be defined) or avoiding
to check the integrity of variables that are known to be inside registers (which are supposed
to be out of reach of an attacker).

For this implementation itself to be safe against attacks, it is necessary to ensure that
neither the instrumentation code can be avoided, neither the table on which it relies can
illegally be modified. This however can be ensured for instance by ensuring control flow
integrity thanks to the method of [ABEL05a] and by placing the table inside a SMAC, using
the same method. This assumption is therefore entirely legitimate.

It should be noted that as this method needs to insert checks anytime a write is per-
formed, this makes it a bit tricky to deal with library functions which may not be possible
to instrument to perform the updates in the table. One way to circumvent this problem is
to globally state that any part of the memory accessible by a library function was updated
illegally, each time it is called11. Therefore, if these parts of the memory include actual loca-
tions of variables used in the program, an illegal write performed via a library function will
still be detected the next time the variable is read.

From a performance point of view, the implementation of this method given in [CCH06]
leads to an augmentation of the code size of 50% and to an execution time increased by 20
to 250%. These figures come from an evaluation that was performed on a small set of pro-
grams from the SPEC2000 benchmark suit. The authors note that as these programs are
CPU-intensive, one could hope that the time overhead would be less important for pro-
grams that would more likely be the target of security improvements like, e.g., Web servers.
An additional experiment by the authors tend to validate this hypothesis, showing that the
time overhead for such a server is negligible when its load is low, and that it is around 20%
when it is reasonably important.

11With the exception of memory locations accessible thanks to a pointer given to these functions as argument.
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3.2.2 Data flow external monitoring

The work from the previous section is not the only approach that makes use of a notion of
data flow. For instance, the work of [BCS06] discusses a method to compute fine-grained
relationships between the arguments of the different system calls of a program, by observ-
ing its system call trace. This allows to build a model of the normal behaviour of a program
to be later used to detect attacks that make the program drift from this model.

However, the methods used to achieve these objectives are very different from the others
we considered so far, as they rely more on an external, statistical approach rather than on
source or binary analyses. We will therefore not consider them further in this report.

3.3 Data value methods

We close this section by discussing methods which focus on the theoretically possible vari-
ation domain of programs’ variables. This approach is quite important in this report, as our
work precisely consisted in improving the work of [Dem11], which is an approach falling
into this category. Due to its importance regarding our work, this method will be described
in a section of its own, in section 4. We will however quickly describe a similar approach in
the remainder of this section.

We present the work of [LLHT11], which aims to detect attacks thanks to how they mod-
ify the value of variables of the program, even if this does not lead to a violation of, e.g., its
control flow. Unlike most of the other methods presented in this section, this system fo-
cuses on software written in Ruby (and not in C), thereby targeting Web applications.

The idea used in this work is to compute invariants on the value of variables and then to
check that these invariants hold when the program is executed. An alert is triggered when
this is not the case. In practice, two issues must mainly be addressed: choosing the variables
on which computing the invariants, and actually computing invariants.

The choice of variables made by the authors of [LLHT11] is to consider the variables
that are influenced by user inputs. These inputs are the entry point of any potential attack,
and therefore one could argue that an attacker needs to subvert the value of variables that
may be influenced by them in order to perform his attack successfully. In practice, this set
of variables is determined by using a method of data tainting12. This can be implemented
efficiently in Ruby, as it already features a tainting mechanism.

When it comes to invariants, the implementation of [LLHT11] uses heuristic invariants
produced by the Daikon invariant generator [PAG]. Daikon tries to generate invariants from
execution traces collected from runs of the program to be instrumented, and may be cus-
tomized in order to try generating invariants of a form specified by the user. In the case of
[LLHT11], the invariants it tries to find are: whether a variable is constant or takes its value
from a finite set of elements; whether two variables are equal; and whether two variables
are ordered in a certain way by an order relationship.

12That is, runs of the program are performed that taint a variable whenever it is influenced (directly or not)
by a user input
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A preliminary evaluation from the authors of [LLHT11] shows that an instrumented pro-
gram may indeed be able to detect attacks that illegally change the value of data of the
programs, by the way of, e.g., SQL injections. However, no estimation of the performance
overhead is given.

Let us conclude by saying that this is yet another system that relies on tests that must
themselves be protected against attacks; but this can be provided by external means (even
if there may be quite fewer of them when the programs are written in Ruby instead of C).

4 Our approach

This section presents some generic aspects of SIDAN [Dem11], which is the technique stud-
ied and improved upon in this work. We first give an overview of the approach and explain
some design choices, then we describe in more details (compared to what has been done
so far) the technique of executable assertions, and we finish by a presentation of our attack
model.

4.1 A data value method

SIDAN is a system that exploits the value of (important) data of the programs in order to
detect attacks, something that was already presented in section 2 and section 3. The choices
made in SIDAN are however quite different from the ones of [LLHT11] —the technique of
section 3 with a similar approach.

SIDAN targets C programs for which the source code is available, and is implemented
in the Frama-C framework [CEAb].

We recall that a data value method tries to find invariant properties on the value of data
of the programs, and then checks at runtime that the invariants hold. A practical implemen-
tation of such a method faces two main choices: deciding on which variables computing
the invariants, and what sort of invariants to compute (and how). We now describe those
choices.

Choosing relevant variables The choice of variables of SIDAN is based on the idea that an
attacker will most certainly try to influence the execution of system calls, because it is the
only way for his attack to have a direct impact on the system where the software is execut-
ing13. Thus, the variables chosen in SIDAN are the arguments of system calls (and actually
also any function call), with the addition of the variables that influence the execution of the
calls (e.g., test conditions or loop counters).

Along with the choice of variables, one ought to choose where in the code the invari-
ants properties of these variables are computed (and hence where instrumentation will be
inserted). The answer of this question may not be as immediate as for control and data flow
methods, where the locations of the tests is a direct consequence of the nature of what is

13By making this assumption, we implicitly consider that we are not so much focused on detecting denial of
service attacks, as those do not necessarily need to directly influence their environment.
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computed and of the attack model. In the case of SIDAN, the choice made by the authors is
to compute the invariants around the system and function calls (which may seem natural
as those are already the focus of the variable choice).

In practice, if the set of arguments of a function is easy to find, it may not necessarily
be so for the set of variables that influence the call. This can still be done, though, by using
program slicing techniques [Wei81], and Frama-C features a ready-to-use such analysis —
roughly speaking, a program slice is a sub-program computed around an instruction, which
behaves the same way as the whole program as far as only the said instruction is considered.
However, one should still note that this analysis is approximate, and it may yield a superset
of the variables that may really influence a call.

Computing invariants The various invariants that are computed on the target variables
are described in great detail in section 5. Here, we only mention the fact that from a generic
point of view, these invariants are computed statically thanks to abstract interpretation
techniques [CC77], using the analyses of Frama-C.

Performance From a performance point of view, SIDAN has a quite low impact on the
execution time and memory consumption of the instrumented programs. This is because
it only adds tests around the function calls, which are not the most prevalent instructions
in programs. For the same reason, the augmentation of the code size is quite limited. A
series of fault injections was used to estimate the relevance of this method, and showed that
approximately 70% of the faults injected in the tested SSH server were detected. However,
one should note that the static analyses used to generate the invariants are themselves quite
costly, and therefore it may take a long time (up to several hours) to instrument a program.
Performance issues of SIDAN are further discussed in section 7.

4.2 Using executable assertions for invariant checking

This section describes in some detail the rationale for using assertions in SIDAN, and how
they are structured.

4.2.1 Wait... why do we want this?

SIDAN is based on the computation of invariants on the value of data of the program. Once
these invariants have been computed, it is necessary to devise a way to use them as means
of intrusion detection. The approach used in SIDAN is simple, and consists in using exe-
cutable assertions inserted throughout the source code. This is similar to what the related
works of section 3 did. In the case of SIDAN, the goal of these assertions is to check that
some properties (i.e., the desired invariants) are fulfilled at some specific points of the pro-
gram (i.e., the function calls).

The nature of the invariants in SIDAN is quite amenable to verification by an assertion.
As the invariants express properties on the values taken by programs’ variables, these prop-
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erties can be translated in a programming language in a straightforward fashion. Therefore,
the whole “power” of an invariant can fully be captured by an assertion.

The fact that the assertions we insert are executable is merely to make the intrusion
detection practical; it is entirely possible to imagine non-executable assertions inserted, e.g.,
in the form of comments. This could still be useful for informative purposes or making
proofs of programs. As we aim for the programs to detect violations of their invariants at
runtime, though, making the assertions executable is much more relevant in our case.

Even though we say the assertions are executable, there is no real need to specify at this
point what the effect of a failed assertion should be14. We think that this choice is really up
to the end-users of an intrusion detection system, and we thus only need to let the effect of
a failed assertion to be easily configurable.

4.2.2 Structure of the assertions

We now detail the different structures used to build the assertions in SIDAN; these will de-
pend slightly on the sorts of invariant that are computed, and three different types of asser-
tions may be used.

1. The first type is an assertion that is inserted just before a function call, and that may
involve any variable currently in the scope of the program.

2. The second type is identical but for the fact that it is inserted right after the function
call.

3. The third and last assertion type is made of two parts: one part inserted before the
function call, consisting in the declaration and assignment of local variables, and a
second part inserted right after the function call and being the assertion proper; in
this case the assertion may also involve any variable currently in the scope, including
the ones that have been declared just before the function call.

It may seem mundane to distinguish between these different sorts of assertions, but
their differences in fact lead to important implementation issues, as it will be discussed in
section 6. The three sorts of assertions are described in figure 8, where P is an unspecified
predicate responsible for checking the validity of the invariants.

Type 1: assert(P(var_in_scope1, var_in_scope2, ...)); funk(args);

Type 2: funk(args); assert(P(var_in_scope1, var_in_scope3, ...));

Type 3: new_var = val1; ... funk(args); assert(P(new_var, var_in_scope1, ...);

Figure 8: The three possible structures for an assertion

4.3 Attack model

In this section we explicitly state the hypotheses we make about the abilities of the attackers
whose attacks we wish to foil. This will enable us to precisely know when it is (not) possible

14Although we can still suggest a few possibilities like writing a log entry or terminating the program (either
in an orderly fashion or not)
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to circumvent our system, and also what sort of attacks are detected when the system is
effective.

This also provides guidance to an end-user, so that he would be able to take all the
necessary measures to make an instrumentation by SIDAN meaningful.

4.3.1 Non-modification of the code

We suppose that the attacker is unable to dynamically change the code of the program we
wish to protect. If this were not the case, avoiding our assertions would simply be a matter
of removing or rewriting them so as to prevent any alarm from being raised.

This assumption is not valid in a completely generic setting but is still quite reasonable
when we suppose that a user of SIDAN is serious about improving the security of the pro-
grams he instruments. In this case, it would be logical for him to also execute the program
in a hardened environment —like one provided by, e.g., program shepherding [KBA02]—
and therefore to express security policies that forbid the dynamic modification of code.

4.3.2 No direct modification of the content of the registers

We make the assumption that is is not “realistic” for an attacker to be able to change the
content of the registers inside the processor.

This assumption is necessary, because an attacker able to do this could then pass through
our assertions unnoticed by directly changing the values against which the variables are
checked. For instance, suppose we check that the variable var is either 0 or 1, and that an
attacker needs to change var to 29 for an attack to succeed; if he is able to modify the con-
tent of the registers, he could change the assertion so that it checks that var is either 0 or
29, completely invalidating the protection offered by the assertion.

Similar assumptions are made, e.g., in [ABEL05a], where it is assumed that an attacker
cannot modify a few distinguished registers at some points of the execution of the program.

4.3.3 Impossibility to bypass the executable assertions

We also make the quite natural assumption that it is not possible to bypass our assertions.
This is obviously necessary for our instrumentation to be of any use.

Although this assumption is far from being true in a general context, it is perfectly
valid if one uses SIDAN in conjunction with a system that preserves the integrity of the
control flow of a program like, e.g., [ABEL05a], or one that allows the definition of non-
circumventable tests like, e.g., [KBA02].

4.3.4 Possible modification of the content of the memory and data segments

What SIDAN may protect against, then, is the modification of the content of the memory of
a running program or of its data segments to alter the value of a variable. In this case, if the
new value of the variable is such that it violates one of the invariants computed by SIDAN,
the attack will be detected.
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5 The different sorts of invariants

In this section, we present the different sorts of invariants that we compute with our tech-
nique. The difference between an invariant and an assertion that checks its validity being
quite small, we choose to present the invariants in the form of their corresponding asser-
tions. This choice is motivated by the fact that it helps to highlight the difference between a
“theoretical” invariant and what we are actually able to compute with a concrete implemen-
tation of our technique. Indeed, some of the contributions of our work are directly related
to implementation issues and consisted precisely in creating new assertions for invariants
that were already known15.

As an example, we show in figure 9 the notation that we will use for the call of an imag-
inary function “funk” of arguments arg1 and arg2, saving its result in res; the notation for a
corresponding imaginary invariant on the variation domain of arg1 and arg2; and the func-
tion call instrumented with the assertion corresponding to the invariant.

Bare function call: {res ←[ funk(arg1,arg2); }
Invariants before the function call: arg1 ∈ {0,1}∧arg2 > 0
Instrumented function call: {assert((arg1 = 0∨arg1 = 1)∧ (arg2 > 0));

res ← [ funk(arg1,arg2); }

Figure 9: Notation for code excerpts, invariants, and executable assertions

5.1 Original invariants

We first present the invariants as originally computed in [Dem11]. These invariants, for
a given function call, express constraints on the variation domain of as many variables as
possible, provided they are in the current program scope and in the program slice computed
around the said function call.

Given that we want to protect the program against malicious function and system calls,
the variation domains that are considered for the invariants are the ones right before the
call. One could consider the alternative of checking the invariants computed after the calls;
the main consequence this choice would have is that the detection of a malicious call would
become possible only after it occurred, under the additional condition that the function re-
turns16. The consequence of all of this is that the nature of these invariants leads to asser-
tions of the first type described in section 4.2.

The actual invariants used in SIDAN closely reflect the capabilities and limitations of
the system used to implement them, i.e., Frama-C. What we describe now is therefore the
original invariants such as they are computed in practice.

15 The implementation part of this work is thoroughly discussed in section 6.
16Of course the invariants before and after the call have no reason to be the same in general, and therefore

the choice between the two is real.
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5.1.1 Basic invariants on integer types

The first type of invariants computed in [Dem11] leads to assertions on the program’s in-
teger variables (as we consider C programs this means, e.g., variables of type int, unsigned
int, char...), checking the simultaneous membership of each variable to an explicitly defined
set. This is illustrated by the following example, where a function call is instrumented with
tests to check that the variables arg1 and arg2 both belong to the set {0,1}:

{assert((arg1 = 0∨arg1 = 1)∧ (arg2 = 0∨arg2 = 1)); funk(arg1,arg2); }.

An implementation limitation of those invariants is that they may not involve arrays or
structured variables.

5.1.2 Aggregated invariants on integer types

One nice evolution of the previous invariants presented in [Dem11] is to take into account
the fact that not all of the elements of the Cartesian product of the possible variation sets
for each variable are possible. In other words, it may be that the value taken by one variable
restricts the possible values for another variable to only a subset of all of the values it can
otherwise assume. For instance, if we consider the previous example where arg1 and arg2

both belong to {0,1}, one could imagine that when arg1 = 0, then we necessarily have that
arg2 = 0.

What was implemented in [Dem11] is a way to obtain invariants that only consider the
configurations of values that are found to be possible. Therefore, if we consider the previous
example, with the constraint that arg1 = arg2, the corresponding instrumentation of the
function call would be:

{assert((arg1 = 0∧arg2 = 0)∨ (arg1 = 1∧arg2 = 1)); funk(arg1,arg2); }.

Of course, such relations between the values of variables may not exist, and even when
they exist it may not be possible to actually find them. What we say in this paragraph is
therefore just that when it is known, such an information will not be ignored and will make
its way to the actually inserted assertion.

It should be noted that despite the appearances, the invariants that are computed here
are not the results of analyses computed on so-called “relational domains” (described, e.g.,
in [Min04]), which would enable one to express properties such as 0 ≤ arg1 +arg2 ≤ 1; even
if those may sometimes give results equivalent to what is computed in SIDAN.

5.2 Invariants on arrays and structured variables

We now describe the first improvement we realised on the original invariants. This improve-
ment does not change the type of the invariants, which means that the assertions they pro-
duce will still be inserted before the function calls, and will still involve variables from the
same program slice as before. The only difference, in fact, is that the invariants may now
express constraints on C arrays and C structures, thereby increasing the possible number of
involved variables. As an example, the following assertion could now be generated:
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{assert((arg1 = 0∨arg1 = 1)∧ (arr1[0] = 2)∧ (stru1.a[2] = 0)); funk(arg1); }.

It is however important to note that these invariants still involve variables that are akin
to integers; given an array or a structure, it is still not possible to express invariants in terms
of addresses. For instance, for a variable arr1 declared as int *arr1[64], it is currently not
possible with our system to produce invariants of the form arr1[7] = @7, with @7 being some
address in the memory17; similarly, producing the invariant stru1.a = @ for a structure stru1

which field “a” is of type int * is currently impossible. The reasons for this improvement
come mainly from changes in the implementation.

5.3 Interval approximations for the variation domains

5.3.1 The return of the variation domains

So far, the analyses used to compute the invariants in SIDAN reasoned in terms of variation
domains defined as explicit sets of integers; that is, it reasoned on properties of the form
var1 ∈ S , with S an explicitly defined set of integers such as {0,1,2,7,1200,4520}. When
such an invariant needs to be expressed as an assertion, all there is to do is creating an
expression of the form: ∨

v∈S

var1 = v (1)

When the tweak from section 5.1 is used to obtain aggregated invariants, the variation
domains are defined in a slightly different fashion, as properties of the form 〈var1..n〉 ∈ T

with T an explicitly defined set of elements of Zn such as {〈001〉,〈221〉}. Expressing such an
invariant as an assertion is straightforward, leading to expressions of the form:

∨
u∈T

n∧
i=1

vari = ui (2)

Expressing the variation domains in this way is conceptually easy, but it is not without
limitations. There are mainly two of them, which are in fact closely related:

• firstly, if the set S (resp. T ) contains more than a few elements, converting a variation
domain into an expression of the form 1 (resp. 2) might be inconvenient, in the sense
that the resulting expression would be difficult to read and lengthy to check;

• secondly, it is inconvenient in itself (i.e., expensive in terms of computing power and
memory) to produce big sets as the results of value analyses, as it implies the handling
of big objects all the way through the value analysis algorithms.

All this means that this approach does not scale well to big variation domains, although
it is practical and pretty relevant when working on small domains. An alternative way of
representing the variation domains seems therefore necessary.

17It was already —and it remains— impossible to obtain invariants of the form var1 = @ for some variable
var1 declared, e.g., as int *var1.
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5.3.2 How Frama-C does it

The default behaviour of the value analysis of Frama-C is to define the variation domains
of variables as sets up to a certain point, and then to approximate the sets by intervals of
integers when they become “too big”. For instance, the variation domain for a variable that
may assume the values 1, 2 or 3 is defined as {1,2,3}. However, if the same variable could
assume any integer value between -500 and 1230, its variation domain might be defined
as [−500,1230], which is obviously more convenient a result to handle than a set of almost
2000 elements.

Using intervals to describe variation domains is of course not without its own draw-
backs, as it often leads to a loss of precision. How important this loss may be is of course
highly dependent of the context; approximating the variation domain of a variable that may
assume the value of any prime number between 0 and 100 000 by the interval [2,100000] is
of course imprecise, whereas no loss of precision whatsoever occurred in the former exam-
ple from above.

One way to mitigate the loss of precision led by the use of intervals is to express addi-
tional constraints for elements to be part of the variation domains. In Frama-C, this is im-
plemented in the form of one congruence relation that can potentially be added to the orig-
inal interval. For instance, if a variable var1 may assume any value from a big set bounded
by 0 and 2000 (say too big to be handled explicitly as a set), and if it happens that it never
assumes an odd value, then what we will obtain from the value analysis plugin of Frama-
C is that var1 ∈ [0,2000] ∧ var1 ≡ 0[2]. However, we stress again the fact that the plugin
does not use relational variation domains, and thus does not produce invariants such as
0 ≤ var1 +var2 ≤ 1.

5.3.3 How does SIDAN use what Frama-C does

As it is said at the beginning of this section, SIDAN so far only considered variation do-
mains expressed as sets. A motivation for this choice is that using interval domains is not
compatible with the advanced “aggregated invariants” presented in section 5.1; using these
implies toggling off the interval approximations of Frama-C, thereby preventing any loss of
precision at the cost of what is just mentioned above.

Even if this choice is perfectly sound, we think that it may be of some interests to use
invariants on interval domains as well, as a compromise proposed to the end-user. In this
case, when aggregated invariants are not used, the invariants in SIDAN may use both types
of variation domains. This reflexion led to a change in the implementation of SIDAN in
order to take interval domains into account, now creating an assertion in the event of an
invariant using such a domain. Constructing the assertions is pretty straightforward, the
invariant var1 ∈ [b, t ]∧var1 ≡ r [d ] leading to an expression of the form:

b ≤ var1 ∧var1 ≤ t ∧var1 ≡ r [d ] (3)
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5.4 Invariants on the return values of functions

The original invariants presented in section 5.1 are computed before the function calls; we
now present a new sort of invariants computed just after the functions return. The idea of
this invariant is very simple, and simply consists in checking for a function that its return
value is indeed within its theoretically possible variation domain. For the same reasons as
for the previous invariants, computing these is only possible when the functions return an
integer value, thus excluding functions that return pointers.

It is obvious that the instrumentation used for these invariants will be of the second sort
as described in section 4.2, with checks being inserted right after the function call.

The rationale behind this sort of invariants is to make amend for the fact that the value
returned by a function is not part of the original invariants; this would have been possible
if those had been computed after the function returns.

5.5 Invariants on locally constant variables

5.5.1 Original idea for new invariants

We now present the last sort of new invariants that we introduce with this work. The initial
motivation for these invariants was to enhance the original ones by making them become
inter-procedural, by way of constraints propagation. In more details the idea was, given a
function and its corresponding instrumentation, to determine which of the variables used
in the instrumentation would be bound to the same constraints when present inside the
said function. Once these variables are found, their constraints would be propagated down
to every function call (if any) in the body of the original function.

This can be seen as an opportunistic extension of the original invariants: one tries to
check the variation domains of variables as much as possible, even at points where these
variables would not be expected to be used. This idea is illustrated in figure 10.

assert(v1 ∈ D1 ⋀ v2 ∈ D2)
funk(....)
{
        .....
        assert(v3 ∈ D3) +  assert(saved(v1) ∈ D1   
        funk2()
        .....
        assert(v3 ∈ D3 ⋀ v4 ∈ D4 ) +  assert(saved(v1) ∈ D1
        funk3()
        .....
}

Save location &
propagate constraint

Figure 10: Propagation of the constraints on a variable
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Implementing this idea is not without hurdles, and mainly two issues would need to be
addressed: the first is finding a way to determine which variables should have their con-
straints propagated, and the second (quite more problematic) is to devise a method to ac-
tually check these constraints, that may involve variables not in the scope at the moment
where we wish to check them.

5.5.2 Think different

A simple observation actually allows a rather efficient implementation of a very similar kind
of invariants in the case of terminating functions. The idea is to consider those of the vari-
ables from the original invariant that are left unmodified by the “real” code of the function,
and to ensure that they were indeed left constant once the function returned.

This can be easily implemented by saving the value of the relevant variables into tempo-
rary variables, just before the function call, and then by checking the variables against their
saved value just when the call finished18. In other words, the assertions built upon those
invariants are of the type 3, as shown in the figure 8 of section 4.2.

The only remaining obstacle to this analysis is thus to find precisely which variables are
not modified by the function.

It should be noticed that the constraints that are verified by these invariants may be
quite strong, in particular allowing to check properties on addresses (typically on the value
of pointers and on the base value of arrays) which is something that —as already said— is
not deducible from the results of the value analysis as it is currently used.

We can also see that when combined with the original invariants, this technique also
makes redundant any check on the variation domains after the call (as previously discussed
in section 5.1) for the variables that remain unchanged after the function returns and for
which the variation domain was known.

This last point can be illustrated with the following example: consider a function “funk”
that does not modify the value of a variable var1, which variation domain before (and thus
after) the call is the interval [0,100]. By saving the value of var1 and verifying that it is the
same after the call, it is not only possible to check that it is still in the interval [0,100], but
also that its value did not change to another one (in the interval or not), for instance detect-
ing if var1 changed, say, from 29 to 37. The two instrumentations are compared in figure 11.

The difference between this approach and the one of the previous section is that the
assertions are only checked when the function returns, which means that we may lose in-
variants that could have been computed on non-terminating functions. On the other hand,
the invariants that we compute are more precise than what could have been obtained by
constraints propagation, as we check the variables against a single value.

18It is quite obvious that in this case, our attack models relies again strongly on the fact that the content of
registers may not be modified by an attacker, as we expect the integrity of the saved values to be preserved
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assert(0 <= var1 && var1 <= 100);

funk(var1);

assert(0 <= var1 && var1 <= 100);

babar � var1;

assert(0 <= var1 && var1 <= 100);

funk(var1);

assert(babar = var1);

Figure 11: Assertions on variation domains after the calls and of constant variables, com-
pared.

5.5.3 Finding locally constant variables

It is quite fortunate that Frama-C already implements an analysis that fits our objective of
determining which variables are not modified by function calls. This analysis is provided by
the scope plugin (which itself relies on the value analysis), and enables us to easily compute
the information we seek.

The candidate variables that are used for this invariant when they are determined to be
constant are taken from the program slice computed around the function call, pretty much
in the same way as the variables involved in the other sorts of invariants.

Of course, one variable may be involved in one sort of invariant and not in another, and
it is often the case in practice that one variable is found to be constant even if its value is
not known at all.

5.5.4 Address verification

We now would like to highlight the use of this new invariant in the case of the verification
of the values of pointers and of the base addresses of arrays.

It is quite obvious that an attacker able to tamper with the value of one such variable will
then be capable of changing the value of whatever part of the memory that can legally be
accessed from the attacked variable19. Being able to detect pointer tampering is therefore
an important part of attack detection in general.

One should also note that in the case of arrays (or similarly, in the (maybe less common)
case of pointers on which pointer arithmetic is performed), arbitrary writes in the memory
can be achieved in two ways: the first by tampering with the indices used for the array (in
which case the currently discussed invariant is useless; but this attack implies using values
for the indices that lie outside of their expected variation domain, and therefore it may be
detected by the original invariant); the second by tampering with the base value of the array,
so that the regular accesses to the array in fact lead to the desired memory location.

In the case of the invariant presented in this section, it is pretty straightforward to create
the assertions needed to ensure the non-modification of pointers within a function call, as
pointers are seen like any other variable by the scope analysis.

19Here, legally means, e.g., in the same segment of memory, so that the access will not raise a runtime error.
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5.6 Summary of the progress on invariants

In this section we briefly go through the advances that have been realized on the invariants
of SIDAN that have just been described:

1. The invariants may now involve integer arrays and structures, and their variation do-
main may be expressed in the guise of an interval (5.2, 5.3).

2. A new invariant makes use of the variation domain of the value returned by a function,
hence leading to assertions inserted after the function call (5.4).

3. A new invariant expresses the fact that some variables are not modified by a function
call, hence leading to assertions inserted after the function call, using temporary vari-
ables introduced right before it (5.5).

The impact of these improvements is evaluated in section 7.

6 Implementation

This section presents details about how all of what has been described so far is actually
implemented. Implementation was the main focus of this work, and it is therefore only
fair to dedicate a large amount of this report to implementation-specific points. We start
by presenting Frama-C [CEAb], on which our implementation is based, then we give an
overview of our work, and we end by detailing various implementation choices that were
made to answer concrete challenges and issues.

6.1 Frama-C

This section is dedicated to the presentation of Frama-C and of how it interacts with our
work.

6.1.1 Frama-C overview

Frama-C is a framework for the modular analysis of C programs developed by the CEA [CEAb].
As the name implies, Frama-C is not a single, heavyweight software that invariably serves
a single purpose (whatever sophisticated that purpose may be), but rather a collection of
tools made available to the user; the said tools may be used independently (although some
may depend on others) or in conjunction, depending on the needs of the user.

Regardless of the purposes of the tools and analyses, they are all implemented in the
form of plugins. A plugin may rely on another already existing plugin to perform its work,
or it may solely use a core kernel application programming interface (or API) useful for, e.g.,
parsing or for the exploration of abstract syntax trees (or ASTs). In the case of SIDAN, the
analyses that compute our invariants have thus been implemented in the form of a plugin
as well.

Obviously, not all of the Frama-C plugins are useful for our purposes; we quickly present
the plugins we use in the next section, but apart from in this paragraph none of the others
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will be mentioned. It however seems fair to say that Frama-C does not limit itself to the use
we make of it, and that it is able to, e.g., prove the validity of user-defined specifications of
functions thanks to weakest precondition analyses, by the way of the Jessie and Wp plugins.

Finally, the whole framework is written in OCaml [Inr], and therefore so is our plugin for
SIDAN.

6.1.2 Useful plugins for SIDAN

We give a quick description of the three Frama-C plugins on which the SIDAN plugin relies
(although they all have been already mentioned in previous sections, at least implicitly) and
give an insight of how they are useful for our purposes.

The value analysis plugin The value analysis plugin is a heavyweight plugin used by many
others (including the two other plugins used by SIDAN, as a matter of fact). It is a powerful
tool, albeit expensive, that allows the user to perform queries of the form “what are the ex-
pected values that this one variable may take at this one precise point of the program?”. The
answer comes in the form of a non-relational variation domain (that is a variation domain
using only one variable at a time) which may be of several sorts, as discussed in section 5.3.

One should keep in mind that this type of analysis is not without limitations, not all of
these being easy or even possible to overcome. In particular:

• The nature of this analysis needs the user to specify an entry point for the program.
This is because the range of values that a variable (say babar) may take is in other
things influenced by the range of values that may be taken by the arguments of the
function in which babar is declared. The values of the arguments therefore need to
have been determined in the first place, which again implies knowing the order in
which the functions are called.

It is of course possible to suppose that every function may be an entry point, but this
would highly decrease the precision of the analysis; the alternative is then to specify
an entry point. Most of the time this is not hard in itself —C programs generally use
the main function as entry point— but it implies analysing the whole program all at
once, which is not as convenient as would be a function-wise analysis.

• Not all of the data types are equally amenable to analysis by this plugin; although it
performs well on integers, it is quite harder to efficiently track the value of pointers
and, e.g., to handle C strings. This is the reason why we mainly consider invariants on
integers in this work.

• A sometimes pretty annoying limitation, which in a way is a consequence of the previ-
ous one, is that “degenerations” might occur when the analysis is unable to determine
with enough precision where a given pointer points, and when this pointer is used to
write in the memory. When this happens, from the point of view of the value analysis,
the write instruction may overwrite any location in the memory and therefore nothing
can be said about anything anymore.
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If such a problem happens (and if it does indeed happen because of imprecisions in
the analysis, not because there is actually a bug in the program), one should ideally
run the analysis again on a program instrumented to help it being more precise.

• Frama-C is a framework for the analysis of C, and obviously not of assembly instruc-
tions. It is however common for the C compilers to permit the user to insert inline
assembly code in the programs, making it impossible for the value analysis to deduce
anything about variables modified by the assembly code.

The two extreme ways for the value analysis to deal with such a situation are the
following: considering that the assembly code may modify anything in the memory
(thereby causing a degeneration as previously described); or considering that it has no
effect whatsoever on any variable (this is the choice made by Frama-C). It should be
obvious that none of these is satisfactory, making the analysis of programs containing
inline assembly problematic.

One solution to this problem is to painstakingly replace by hand every assembly code
by its best (ideally equivalent, if any) C approximation with respect to the analysis.

• Finally, in the current state of Frama-C, no analysis of parallel code is possible.

Even in the presence of these limitations, the value analysis plugin is, as we already said,
a very powerful tool. One of its main advantages is that it is logically sound; in other words,
it means that the variation domains that it computes are always over-approximations of the
real domains20. For instance, if the value analysis states that var ∈ [0,127], it is guaranteed
that we will never have var = 224. However, there is no guarantee on the precision of the
analysis, and it may well be possible that var is in fact never different from 0.

At last, we should mention the fact that the precision of the value analysis is tunable by
the way of a few parameters, one such being the slevel of the analysis. Without too much
details, let us say that the value of the slevel determines how much the loops are unrolled
and how far if / then / else branches should be separately analysed. A high slevel will make
the analysis slower (if the code happens to contain big loops or intricate conditionals) but
also most of the time more precise.

As the results of the value analysis are used in SIDAN (and the other plugins used by
SIDAN), it goes without saying that the value of the slevel will greatly influence the effi-
ciency and precision of the whole instrumentation. Unfortunately, there is no simple way
to quickly determine the “right” slevel for a program.

The program slicing plugin It has already been said that we use program slicing in SIDAN
as a way to collect variables of interest for running the value analysis. In practice, slicing is
performed by a Frama-C plugin devoted to this task, appropriately called slicing.

There is not much issues when using this plugin in SIDAN as we do not care so much
about what generally is important when computing a program slice, such as ensuring, e.g.,

20This is contingent on the fact that any problem related to the analysis has been resolved, e.g., any inline
assembly code has been properly dealt with.
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that the resulting slice is a valid, compilable C program21. We also do not really use any
of the options featured by the slicing plugin as they are mainly concerned with specifying
“where” the slice is computed, and the location of the slices we are interested in can easily
be specified from inside our own plugin.

It may be interesting to notice at this point that the fact that we use a whole program
slice to gather variables does not —as one could suspect— actually lead to problems about
the scope of the variables when they are eventually used in assertions. This is simply be-
cause the only variables from the slice that will have a valid variation domain (as computed
by the value analysis) at the point where the assertion is inserted are the one that are always
defined at this point of the program.

The data scope plugin The (data) scope plugin is used in a rather specialized setting inside
SIDAN, as it is only useful for the computation of one sort of invariant (namely the one
on locally constant variables, presented in section 5.5), whereas the two plugin previously
presented are useful for all of what SIDAN does.

Among the few services proposed by the scope plugin, the one we used is its computa-
tion of so-called data scopes around variables. A data scope for a given variable V at a given
point P of the program is defined as the set of statements in the program where V holds the
same value as at point P ; it should be obvious that this sort of sets may be very useful when
computing the invariants of section 5.5.

As a matter of fact the scope plugin actually defines two slightly different sorts of data
scopes: the backward scope is made of the statements Si for which the value of V is identi-
cal between the execution of the Si and the next execution of P ; the forward scope is made
of the statements Si for which the value of V is identical between the execution of P and
the next execution of the Si . This is illustrated in figure 12, where statement 2 is the only
one in the forward scope for the variable var1 at statement 3; and where statement 3 is the
only one in the backward scope for the variable var1 at statement 2.

1 : var1 = 0; 2 : var2 = 1; 3 : var1 = var1 +var2;

Figure 12: A tiny program to illustrate data scopes

In the case of our invariant, what we seek are variables that have the same value after
the execution of a statement consisting in a function call. One way to put it in terms of
backward and forward data scopes is to say that for a variable to be part of an invariant, we
need the function call to be part of the backward data scope computed for this variable at
the statement immediately following the function call.

21This is in fact something that is guaranteed by the plugin, thus a serious user of the plugin should not have
to worry about this either. The point is, from our point of view we do not even care whether this property holds
or not.
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6.1.3 Frama-C and the C Intermediate Language

We now turn to an important component of the Frama-C kernel that is also central to our
plugin, that is the C Intermediate Language, or “CIL” for short22 [NMRW02]. CIL is a high-
level intermediate representation of C programs aimed at easing source code to source code
transformation and program analysis. Like Frama-C, CIL is written in OCaml.

Representing C programs in CIL is useful for a range of reasons; the most down-to-earth
are probably that CIL uses a simpler, less-ambiguous syntax than C, and that it defines a
clean API to handle C instructions and types in OCaml. Another interesting feature of CIL
is that it features a series of “tree visitors” useful to explore (and potentially transform) the
abstract syntax tree of a program. We detail a few of these points in the next paragraphs.

Unsugar the code CIL performs various “simplifications” of C programs. In other things,
it transforms all the sorts of loops in a single loop construct, and it replaces syntactic sugar
constructions such as “->” by their alternatives.

These transformations are important to keep in mind in the context of Frama-C, be-
cause even if they do not change the semantics of the code, they may introduce various
temporary variables that are not present in the original program. The code subsequently
analysed by Frama-C being the CIL version, one should be prepared to interpret the result
of the analysis with respect to the original program.

In the case of SIDAN, it means that we should either be able to remove temporary vari-
ables introduced by CIL from the assertions we will insert in the code, or to accommodate
the instrumented program so that the assertions make sense. It is the second solution that
we chose in our case, as it will be made clear later.

An insight into the abstract manipulation of C instructions CIL features an OCaml API
that permits the user to conveniently reason both on the nature of C instructions and on
the type of the involved variables.

For instance, one important CIL object is its representation of C left values (or “lvalues”
for short); those are represented by an lhost (which is most of the time a variable) and an
offset which —when not null— represents the index of an array or the field of a structure.

There is also CIL objects for higher level elements like instructions or statements. An in-
struction, for instance, may be the assignment of a an lvalue from the value of an expression
(yet another CIL object), and a statement may embed an instruction or, e.g., conditional or
loop constructions.

Finally, C types themselves are CIL objects, including function types and structures. It is
therefore quite easy to perform analyses conditional to the types of variables. Properly un-
derstanding CIL objects is important to implement SIDAN, as they are precisely the objects
on which the analyses of Frama-C are eventually computed.

CIL AST visitors The CIL visitors of the abstract syntax tree are in general not directly used
inside Frama-C, as the latter defines a series of customized visitors that overload the ones

22Not to be mistaken with .NET’s Common Intermediate Language.
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from CIL. Nonetheless, the nature of these visitors does not change much.
We will not go too much through the details of the visitors, but we think it is worth

mentioning that the user may choose several levels of granularity when visiting an AST. He
may indeed choose to go through the code of a program statement by statement, or instead
at the level of instructions. This choice of course depends on what the user tries to achieve,
and even then, there might not be a choice strikingly better than any other.

Another thing that should be said about visitors is that they may be used both to per-
form on-the-fly transformations of the AST (and hence of the source code of the program),
or to perform a side-effect free visit. We will not discuss the details of the different possible
behaviours for a visitor, though.

6.1.4 Value analysis internals, a quick overview

In the same way as we described some elements of the C Intermediate Language in the
previous section, we now present a few things about the internal use of the value analysis
plugin in Frama-C. Although quite low-level, these points are important in practice in order
to be able to make good use of Frama-C. Understanding these took an important part of the
implementation effort of this work.

The process of using the value analysis of Frama-C can be quite faithfully described in
the following way:

1. one should start by considering the variable and location in the code for which he
wishes to obtain results from the value analysis; this has mostly to do with the CIL
representation of the program as explained in the previous section;

2. one should then call upon the value analysis to actually obtain something useful for
his purposes;

3. finally, one should take profit of the results of the analysis in whichever way he wants.

The second point is actually a little bit trickier than what might first appear; one of the
original objectives of this work was precisely to improve how the value analysis was used so
that arrays and structures could also be analysed like integers. However, it is also relevant
to see this stage in a high-level fashion as the conversion from a CIL Lval to a Frama-C Ival
—the custom OCaml type that aggregates the different possible types of results of the value
analysis.

It is also at this point that one may customize the value analysis in order to obtain the
invariants on aggregated variables presented in section 5.1.

The third point has to do with the proper use of the Ival results. Those are in fact repre-
sentations of the variation domains of variables, as they were described back in section 5.3.
The two simple forms an Ival may take at this point when used in SIDAN are precisely a Set
of integers and a Top23, which really is the name of the interval results.

An Ival may actually also represent results on floating point types, but those are violently
ignored in SIDAN, in part because performing comparisons on float C types is tricky.

23The name “Top” comes from the > top symbol usually used in abstract interpretation to denote the greatest
element of the lattices.
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6.1.5 ANSI/ISO C Specification Language “ACSL”

This section presents yet another aspect of Frama-C, that is the ANSI/ISO C Specification
Language or ACSL [CEAa]. Although not really central to our argument, ACSL is an ubiq-
uitous view in Frama-C, especially when one is involved with the value analysis. It is a
versatile specification language that allows a user to express necessary conditions on vari-
ables at some point of a program, or highly precise specification of functions, among other
things. Both of these aspects may be visible in SIDAN, although we delay the discussion of
the latter to section 6.3.2.

It is not our objective to give a detailed presentation of ACSL annotations; it is however
a good pretext to give us a little further insight into the value analysis.

Form of the ACSL annotations The ACSL annotations may take many forms; a commonly
encountered one is ACSL “assertions”, quite naturally introduced by the assert keyword. A
wide range of properties may be asserted on variables, such as the fact that they are initial-
ized, that a pointer points to valid memory, or simply a numerical property like “the value
taken by this variable is an odd integer”.

Some forms of annotations may be more specific to function specifications, such as
the requires and ensures keywords which permit to define typical function contracts where
some property is guaranteed after the execution of the function, given that some properties
held before it was executed.

An example of a simple ACSL assertion is shown in figure 13, and states the fact that
two memory locations are valid before being dereferenced. One may note that ACSL anno-
tations are inserted in the form of comments —like many others, such as the Java annota-
tions.

/*@

assert \valid st->a;

assert \valid st->b;

*/

st-> a = st->b;

Figure 13: A simple ACSL assertion

ACSL and the value analysis The reason why ACSL annotations (and more specifically as-
sertions) are so much present when using Frama-C’s value analysis is that the soundness of
the results of the analysis is most of the time conditional to the validity of some properties
of the program variables (we already quickly mentioned a caveat about the soundness of
the value analysis in section 6.1.2).

This means that the value analysis will routinely generate assertions of the form given
in figure 13, and it is the responsibility of the user to ensure that those are actually valid (he
may “convince himself” that they are true, but the cleanest way to deal with such assertions
is of course to prove them, e.g., with the help of other Frama-C plugin such as Jessie or Wp).
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As we do no such thing in SIDAN, we therefore do not truly guarantee the soundness of the
assertions that we create, and there is always a risk for an assertion to actually be false.

6.2 Structure of the plugin

This section now gives a high-to-mid-level view of the implementation of our SIDAN plu-
gin. We start with two examples of instrumentations that show graphically when Frama-C
plugins are used and to what purpose.

R ← funk()
assert(V1 ∈ D1 ⋀ V2 ∈ D2...)
R ← funk()
assert(R ∈ D3)

Interesting
variables for funk.
[Slice plugin]

Computation of variation
domain.
[Value plugin]

Instrumentation.
[CIL visitor]

Figure 14: Process of a SIDAN instrumentation (type 1)

The instrumentation from figure 14 uses invariants presented in section 5.1 and in sec-
tion 5.4. Figure 15 uses the invariants from section 5.5.

R ← funk()
T1 ← V1, T2 ← V2... 
R ← funk()
assert(V1 = T1 ⋀ V2 = T2...)

Interesting
variables for funk.
[Slice plugin]

Computation of locally
constant variables.
[Scope plugin]

Instrumentation.
[CIL visitor]

Figure 15: Process of a SIDAN instrumentation (type 2)

We also show a lower-level partial function call graph in figure 16 that highlights the
important parts of our plugin, function-wise.
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We give a quick description of these functions presented in figure 16; their purposes and
structure should be quite clear from what has already been said in section 6.1.

vstmt_aux The function vstmt_aux is a CIL visitor at the statement level which is at the
core of the instrumentation. It finds the function calls which we wish to instrument and
delegates the invariant computation to the relevant functions. It is also the function respon-
sible for the actual modification of the AST by replacing the original function call statement
by an instrumented one.

get_slice The function get_slice is more or less an API call to the “PDG” program slice plu-
gin to compute a specific program slice, tuned to our needs in the case of SIDAN.

create_exp The function create_exp is a major component of SIDAN and is tasked with
building a CIL expression that represents the about-to-be-inserted invariant for a given left
value at a given point of a program.

Module Coninva

Class coninva_vset_list

External modules

Coninva.create_exp

Coninva.lval_to_ival

Db.ValueCvalue

coninva_vset_list#vstmt_aux

Coninva.get_slice Coninva.get_unmod_list

Db.Pdg Db.Scope

Figure 16: Call graph of the main functions of SIDAN’s implementation
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lval_to_ival The function lval_to_ival does the conversion work needed to obtain a varia-
tion domain (as computed by Frama-C’s value analysis) for a given left value. This is why it
relies on Frama-C’s value plugin and on its internal representation of left values and analysis
results.

get_unmod_list The function get_unmod_list implements the invariant on locally con-
stant variables from section 5.5 by internally relying on Frama-C’s scope plugin.

We do not think it would make much sense at this point to describe SIDAN’s structure
and implementation in more details; we recall however that the SIDAN plugin is an open-
source software, and as such its source code is24 made freely available on the Internet on
http://www.rennes.supelec.fr/ren/rd/cidre/tools/sidan.

6.3 Implementation details

This section is concerned with what is maybe the darkest side of this work, that is the issues
that were faced (and had to be solved) entirely in the context of SIDAN’s implementation.
We think however that the time spent working on them justifies plainly their being men-
tioned in this report.

6.3.1 Shifting right in the periodic table

The very first implementation issue was to update the original SIDAN plugin from [Dem11]
so that it would work with the newest version of Frama-C. When we started our work, there
was a SIDAN plugin for the Beryllium version of Frama-C and one for Carbon, its successor.

The newest version of Frama-C, Nitrogen, was released in October 2011. It features im-
pressive improvements from Carbon, notably the fix of an important memory leak that un-
necessarily hampered the value analysis. Considering the extent of the improvements, it
was the most logical thing to do to port the original plugin to Frama-C Nitrogen.

The extent of the modifications we had to make on the SIDAN plugin for it to work
under nitrogen was not so large25, although the relative lack of documentation both on the
original plugin and on Frama-C itself made it sometimes difficult to determine how the
code had to be modified. The biggest issues were mostly on identifying the parts of our
plugin that —even if functionally correct— could benefit from updates in the Frama-C API
to be implemented again in a more efficient fashion.

We also sometimes had to face what were apparently regressions from former versions
of Frama-C. For instance, we faced an unexpected bug where the translation of original C
code to CIL performed by Frama-C would sometimes introduce temporary variables with-
out declaring them beforehand. This bug was thankfully quickly fixed by the Frama-C team
and did not cause us lasting problems, though.

24Or rather will be, as soon as possible.
25These modifications were mostly matters of changing some types and updating some API calls to reflect the

new organization of some modules inside Frama-C.
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6.3.2 Stubs intermission

We already mentioned several times the fact that the value analysis of Frama-C is no out-
of-the-box miracle, in the sense that one may need to prove assertions or simulate the be-
haviour of non-analysed code for it to be sound.

An important part of the work that needs to be done to accommodate the Frama-C ways
is the creation of function stubs. These stubs are quite thoroughly described in the original
work on SIDAN [Dem11] and it was not the main goal of our work to modify them so much.
We did however slightly revisited the concept and tried to experiment and see if “cleaner”
function specifications à la ACSL could be substituted to the stubs.

We first briefly recall the motivation for stubs and their original structure, and then show
on an example how ACSL specifications can help solving concrete problems that may arise
during the value analysis.

Stub your way The purpose of the stubs is to properly fake the behaviour of library func-
tion that may be used by programs being instrumented by SIDAN. Without stubs, the de-
fault behaviour of Frama-C when faced with external functions is more or less to ignore
them and to consider that they meet some general properties.

This is most of the time unsatisfactory, because one assumption made by Frama-C is
that external functions are side-effect free, i.e., they never change the value of the memory
pointed to by their arguments, if any. This is obviously not always true; one way to rem-
edy this problem is to pretend that the problematic functions are not external, but instead
defined by their stubs alternative.

Stubs might also be relevant to simulate the execution of inline assembly code, as it was
already mentioned in section 6.1.2.

The implementation methodology used for stubs in [Dem11] is straightforward, and
consists in defining alternative functions as simple as possible that act like the original in
term of return values and side effects. They also take into consideration the error values
that the function might return, and in particular the errno values that it might set.

We recall that errno is a global integer variable used in C programs to give information
about the nature of an error; C functions typically do not include such information in their
return values, and it is therefore necessary to read the value of errno to determine if, e.g., a
call to read failed because its file descriptor argument is not valid or because the call was
interrupted by a signal, among other things.

Well-written software tend to handle errors properly, and therefore rely a lot on the dif-
ferent values errno might take; hence it is important for the stubs to faithfully emulate this
behaviour as well.

This approach to stubs is fairly comprehensive but it is not without its own drawbacks.
First, as the stubs are designed to fool Frama-C, it implies that they need themselves to

be analysed by the value plugin for them to be effective. Even if the stub functions are in
general quite small, the value analysis is still an expensive process and thus using (many)
stubs leads to additional cost when performing the analysis on the whole program.
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Second, a change in the way assertions are inserted (we discuss this issue in more details
just in the next section) implies that the stub functions need now to be cleaned up once
the instrumentation process is finished. This is far from being something difficult to do
manually, but automating the process is probably a small challenge of its own (we have not
tried yet, though) and it is in any way something annoying to do. This issue will be made
more explicit in next section.

An ACSL example We now give a quick example of how ACSL specifications can be used
instead of stubs as far as we are only concerned with their return values and side-effects. We
did not investigate the issue so much, and therefore did not try yet to use ACSL to express
information about errno values. This is why those specifications cannot entirely replace the
existing stubs for the moment.

We use the example of the read system call, for which the complete prototype is:
ssize_t read(int fd, void *buf, size_t count );. It is obvious that when success-
ful, read will write in the memory zone pointed to by buf ; yet the default behaviour of
Frama-C is to ignore the fact that up to count bytes of buf may be modified. A simple
ACSL specification that partially solves this problem is shown in figure 17.

/*@

requires \valid((char *)buf);

assigns *(char *)buf;

ensures ((\result <= count && \result >= 0) ||

(\result == -1));

*/

extern ssize_t read(int fd, void *buf, size_t count);

Figure 17: ACSL specification of the behaviour of the read system call

We can note that the specification of figure 17 is less precise than the actual possible
behaviour of read (and than what could be inferred from the analysis of the read stub), as
it omits information on “how much” buf is modified (i.e., from zero to count bytes); it also
does not give any insight about errno, as it was already said. However, it still provides a few
useful information about, e.g., the possible range of result values for the function.

In the end, ACSL specifications are quite cleaner than stubs, in the sense that they do
not really impact the performance of the analysis as the stubs did, and that they are more
discrete when inserted in the code. It would thus be a logical objective to eventually replace
all the stubs with such constructs.

6.3.3 Inserting assertions in the abstract syntax tree

We conclude our discussion of the implementation work with this section, dealing with how
the instrumentation of programs is eventually performed.
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We start by recalling that the original SIDAN plugin of [Dem11] performs the instru-
mentation in two steps by the way of the patch utility program. What it does is creating
“diff” files (one for each source file) containing all the assertions that have been created
along with the location in the source code where the assertion needs to be inserted. The
latter information can easily be obtained thanks to the CIL component of Frama-C. Then,
it simply patches each original source file with the corresponding diff, which results in an
instrumented source code, ready to be compiled.

This approach works quite well in practice, and it results in instrumented code that can
quite easily be compared with the original. However, it relies on a pretty low-level informa-
tion to work, i.e., the location (basically a line number) in the code of any function to be
instrumented.

This led us to a problem we did not expect when we started experimenting with invari-
ants that wanted assertions inserted after the function calls. Indeed, the naive approach of
inserting the assertion on the line after the one of the call is foiled when this one is written
on several lines (which happens quite often in practice); writing the assertion on the line
before the statement immediately following the call does not work either, not least because
there is no guarantee that a function call is always followed by a statement (and in particular
a statement belonging to the same scope).

Instead of trying to determine a reliable way to derive the line number where “post-
assertions” can be inserted from a function call, we decided that it could be better to rethink
the whole way of how assertions were inserted. It seemed sensible to make a deeper use
of the CIL tools offered by Frama-C and to directly insert the assertions by modifying the
program AST. As it was already said, CIL allows to do this quite efficiently by the way of an
AST visitor; and changing our plugin to generate assertions in the form of CIL expressions
(to be inserted in the AST) instead of strings to be printed in a file was expected to be quite
straightforward (and was indeed).

The advantages of switching from patching to AST modification come mostly from the
fact that the control of the code transformation becomes semantic instead of being purely
syntactic. For instance, inserting assertions after function calls becomes pretty straightfor-
ward, and it is not really more complicated than doing it before the call.

However, this approach is not without disadvantages of its own. First, it becomes trick-
ier to match the code resulting from the instrumentation with the original one, because
the instrumentation is now done on the code that has already been transformed by CIL
(with everything that entails: single type of loops, additional variables, less sugar...). Also,
it should be noted that CIL produces a single modified C file for the whole program, which
makes function matching even more annoying. Second, because of CIL producing a single
file, it is in general not possible to directly compile the source resulting from the instru-
mentation anymore, as it was the case with patches. This issue comes from the use of stub
functions that was discussed in section 6.3.2: as there is no way for CIL to guess that those
functions are not to be used in real life they are included in the transformed program as
well, and therefore need to be removed before the compilation.

Therefore, we could say that inserting assertions by AST transformation is more flexi-
ble from the point of view of the plugin, but it is more costly to deal with from the point
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of view of a user wishing to actually instrument programs. However, there may be ways to
accommodate part of this additional cost like, e.g., replacing all the stubs by ACSL specifi-
cations (in this case, only the annotated function prototypes would make their way to the
transformed code, and they do not need to be cleaned up before compiling the program).

7 Evaluation

We shall now turn our attention to how the instrumentation produced by SIDAN is actually
useful in the real life. In particular, we would like to see how the various improvements we
made on the invariants impact the global result.

This evaluation should be carried on three criteria: how costly it is to instrument a pro-
gram; how efficient is the generated instrumentation; and how much overhead is added by
the instrumentation?

Unfortunately, we did not have as much time as we would have liked for the evaluation
presented in this work to be thorough enough; in particular, what we did was quite less
comprehensive than what is done in the original work on SIDAN, which makes the com-
parison between the two a bit tricky.

The main omission during the evaluation of our work from what was done in [Dem11]
is the experimental test of the assertions by fault injection, which allowed to obtain rather
precise figures on how sensitive to attacks were the assertions.

7.1 Performance of the instrumentation process

The evaluation of the performance of the instrumentation process is not easy, because there
is typically a huge variability in the time needed to perform the value analysis from one
program to another (even when comparing programs of the same number of lines). For
instance, figures given in [DMTT11] show that a program of 2300 lines was fifteen times
longer to analyse that one of nearly 3000 lines.

In our case, there were no reasons to believe that the instrumentation process would
take a time significantly different from what would take the original implementation of
SIDAN. We did not try confirming this hypothesis in a rigours fashion, however, in part
because it would have needed us performing instrumentations from the original and new
implementation in an identical and controlled environment. We can still informally state
that this hypothesis seems to be valid, from what we witnessed in our experiments.

In any case, the impact on the performance of the modifications we brought to SIDAN
are dwarfed by the improvements coming from the updates of Frama-C, in which we are
not really involved. For instance, the memory consumption of the value analysis plugin
decreased from several giga-bytes down to a few hundred mega-bytes when switching from
Frama-C Carbon to Frama-C Nitrogen.
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7.2 How do the new invariants fare?

Unlike in [Dem11], we did not directly evaluate the impact of our invariants. We try to
circumvent this issue by directly comparing what invariants we generate with the ones that
were created by the original SIDAN, when used on an identical program.

This permits us to both compare the potential increase in preciseness for invariants ex-
isting in the two instrumentations and to witness where new invariants might have been
created. Unfortunately, it involves some guesswork if one wants to know the impact of those
differences.

We chose to compare our invariants by instrumenting the ihttpd web server [Jør]. The
choice for ihttpd (from among the software for which there is an existing instrumentation
by SIDAN to which we could compare ours) was motivated by the fact that it is a quite short
program (hence making it quicker to analyse) and that it seems quite relevant to harden a
web server against attacks, as it is a typically well-exposed sort of software.

The analysis of ihttpd in [DMTT11] reports 145 assertions generated by SIDAN. In the
case of our instrumentation, this more than doubles to 316, which is a nice improvement
even if we have to keep in mind the fact that a lot of those new assertions are inserted after
the call of already-instrumented functions (and therefore, we do not double the number of
instrumented functions).

We now give a series of examples of invariants that highlight our improvements on
SIDAN. In figure 18, we compare the original assertion (shown on the left) and the new ones
for a function call of ihttpd. The new assertions show the use of intervals in the invariants
and feature an invariant on the return value of a function as well.

coninva_assert(argc == 2);

t2 = strcmp(*(argv + 1), "--vers");

coninva_assert(t1 >= -117 && t1 <= 210

&& argc == 2);

t2 = strcmp(*(argv + 1), "--vers");

coninva_assert(t2 >= -45 && t2 <= 210);

Figure 18: Original (left) and new (right) assertions for a function call in ihttpd

Figure 19 shows an example of invariant on an array that did not exist in the original
instrumentation. In this example, the variable access_log_filename is an array of char (i.e.,
a C string), and the invariant therefore simply states that access_log_filename is the empty
string.

coninva_assert(access_log_filename[0] == 0);

access_log = fopen("/dev/null", "w");

Figure 19: An assertion using an array
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Figure 20 shows an example of invariant partly resting on a structured variable. It shows
how this can be used both for an original invariant using a variation domain and for an
invariant on locally constant variables.

{

register in_addr_t __babar171;

__babar171 = sa.sin_addr.s_addr;

coninva_assert(sa.sin_family == 2 && t1 == 0);

ip = ntohl(sa.sin_addr.s_addr);

coninva_assert(sa.sin_addr.s_addr == __babar171);

}

Figure 20: Assertions on variation domains and locally constant variables

7.3 Instrumentation overhead

We end this part on the evaluation with a short discussion on the performance overhead on
the program execution added by the assertions. We did not carry benchmarks as compre-
hensive as in [Dem11], which used the SPEC CPU2006 benchmark [Cor06]. This evaluation
found a quite low overhead, of the order of a half percent to one percent decrease in a SPEC
score26.

The results of this evaluation cannot be used directly in our case, because we may add
quite a few invariants that may make the whole assertion checking become costlier. How-
ever, we could argue that the total overhead due to these new invariants should not be
tremendous, as even doubling the original overhead would still be quite reasonable.

However that may be, we feel that it is still nice to provide some quick benchmarking of
our own. To this purpose, we used an instrumentation of a reference (non-optimized) im-
plementation of the SIMD hash function [LBF09] in its 256-bits setting, that already features
some simple performance testing.

Our instrumented version of SIMD adds 51 assertions to a source code of the order of
roughly 1000 lines. When ran, the program computes an estimation of the throughput of
the hash function and an approximate number of cycles needed to hash one byte of data.
We show the performance figures for the raw and instrumented program in table 1.

Version Throughput (Mbytes/s) Efficiency (cycles/bytes)
Raw SIMD256 1.006 2478
Instrumented SIMD256 0.995 2506

Table 1: Comparative speeds of SIMD256 with and without instrumentation

The results from table 1 tend to confirm the idea that the overhead of SIDAN’s instru-
mentation is very low; the instrumented version of SIMD achieves a throughput equal to

26A SPEC score measures the ratio between a base running time for a test program and its actual running time
when being tested. A difference of one percent between two SPEC scores is therefore pretty negligible.
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0.989 of the original, and the amortized additional cost of the instrumentation is only 28
cycles per byte of data.

When evaluating the overhead, it should also be noted that given the modest impact of
SIDAN’s assertions on the execution time of a program, too thorough an analysis of its direct
overhead would not make so much sense. This is because a real life use of SIDAN would
likely imply a more important indirect overhead coming from the safeguards that would en-
sure that SIDAN’s assertions could not be bypassed. This safeguarding can easily be done
thanks to control-flow monitoring methods, but those would add an overhead of their own
that is typically more (or at least equal) than SIDAN’s (as, e.g., in [KBA02, ABEL05a]). There-
fore, only benchmarking the combined overhead would really be useful for an end-user.

8 Tutorial essentials

We conclude this report by a quick tutorial that explains how to use our plugin to actu-
ally instrument a program. The instrumentation process itself is partly automatic, but it
requires some familiarity with Frama-C and SIDAN options.

8.1 Basic Frama-C options

Slevel We already discussed the slevel option in section 6.1. It is a quite important tuning
parameter but it may be hard when first instrumenting a program to know to which value
it should be set; choosing the slevel hence often involves guesswork.

Calldeps The calldeps option is quite important too, and should always be set. It ensures
that the functional dependencies computation of the value analysis will never try to simplify
and merge the dependencies of a function for multiple calling sites.

This is important because we instrument each function call separately, and their depen-
dencies provide us with the variables on which computing invariants.

Val-ignore-recursive-calls This option ensures that Frama-C will not stop its analysis when
encountering a recursive function call. The current value analysis of Frama-C does not deal
with such calls, and the default behaviour when encountering one is simply to stop the
analysis, as there would be no guarantees on the soundness of the result if it were to con-
tinue.

In our case, a bit of unsoundness is still acceptable, and it is therefore better to continue
the analysis than producing no result.

More options! Always more options! There is of course a range of Frama-C options dif-
ferent from the few we mentioned here; they might not be immediately useful when first
using SIDAN, though, and any motivated user should really read Frama-C’s documentation
at some point to determine by himself what options are relevant in his case.
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8.2 SIDAN options

We describe here the few SIDAN options that may be used to tune a little bit the instrumen-
tation that is performed. SIDAN itself is implemented as a plugin in Frama-C; it is invoked
with the option coninva.

Tuplevalue The tuplevalue option is the one that triggers the use of invariants on aggre-
gated variables discussed in section 5.1.

Retart This option enables the creation of invariants using the return values of functions,
presented in section 5.4.

Postart This option controls the invariants on locally constant variables of section 5.5.

Noinj Finally, this option prevents the insertion of the code used for fault injection, which
is only useful when one wishes to perform some tests on the assertions produced by SIDAN
on the program being instrumented.

8.3 Selecting files and printing the result

It was already mentioned that the value analysis of Frama-C is best performed from a rele-
vant entry point, typically the main function in C programs. A corollary is that the analysis
(and hence SIDAN) needs to be ran on all the files part of the instrumented program at
once.

In practice, this can be achieved quite efficiently for programs using a Makefile. The
original SIDAN tools came with a script that uses the make -n “pretend” option to list all
the files part of the program and give them as an input to Frama-C. To these files, one also
needs to add the stub functions and ACSL specifications described in section 6.3.2.

In order for the result (i.e., the modified AST of the program, represented by its C syntax)
to be printed, one simply needs to use Frama-C’s print option, probably along with the
ocode option as well, that permits one to specify an output file.

8.4 The Final Touch

Once the file resulting from the instrumentation has been output, it is still necessary to do
a little bit of post-processing before being able to compile it. Part of this is easy, like adding
the declarations of the functions one wishes to use to check the assertions; but other parts
are more annoying, like removing the code of the stub functions (the reason for this being
presently necessary was discussed in section 6.3.3).
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8.5 Command-line example

We show a simple example of a SIDAN command-line invocation to instrument a program
made of a single file in figure 21. This example omits the inclusion of the additional stubs
and ACSL files, but includes most of the options discussed in this section.

frama-c -verbose 0 -calldeps -slevel 299 -coninva \

-retart -postart -noinj katan.c \

-print -ocode katan.sid.c

Figure 21: Command-line invocation of Frama-C on a single file

9 Future work

An immediate future work to improve on what has been presented in this report would
consist in thoroughly evaluating the impacts of our modifications to SIDAN. We did per-
form some evaluations, that were presented in section 7, but time constraints prevented us
to lead what would have been interesting experiments. For instance, it would be much rel-
evant to realize a fault injection campaign similar to what was done on the original SIDAN.

Another future work would be further investigating the use of ACSL for the definition
of stub functions, as this was outlined in section 6.3.2. The use of ACSL specifications for
library functions could be a clean alternative to the current stubs.

It would also make sense to try finding reasonable solutions to the problems that arose
due to the instrumentation by direct manipulation of the programs’ ASTs. These issues were
mentioned in section 6.3.3, and we did not think of any clear way to solve them for the
moment.

Finally, there is probably still room for new, as yet unthought-of invariants that could be
implemented thanks to Frama-C. Searching for them would certainly be part of any future
work on SIDAN.

10 Conclusion

This report described our work on SIDAN. We presented improved and new invariants for
intrusion detection: we extended the original invariants of SIDAN so that they could in-
volve arrays, structured variables, and variation domains represented as intervals. We then
introduced new invariants based on the return value of functions and on the variables that
are left unchanged by the function calls. We also described the implementation part of
our work which mainly consisted in implementing the improved and new invariants in the
SIDAN Frama-C plugin.
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