A Quantum Algorithm for a Variant of LWE

Pierre Karpman
Totally not the DGSE

Jérôme Plût

Totally not the DGSE
(Really!!)

Hanoi
2016-12-06

Learning With Errors: the medium-characteristic case

- Question: how to give practical LWE parameters?
- We give a new parametrization of the Learning With Errors problem.
- Interesting parameters are:
- dimension n;
- real noise parameter σ;
- prime modulus p (also called the characteristic).
- the volume $q=p^{n}$.
- The medium-characteristic cases of LWE correspond to the moduli such that

$$
p \approx \exp q^{1 / 3}(\log q)^{2 / 3} .
$$

- We now repair the Eldar-Shor quantum LWE solver in the medium-characteristic cases.
- We needed slightly more than the allowed 10 frames to prove this; we hope that Steven did not cut anything too important...

Use the (Well-known) Group Law over a Gaussian

- Add a point at infinity \mathscr{O} to a Gaussian.
- Derive a group law using a chord-and-tangent process:

- \Rightarrow The Gaussian cycles at ∞
- \Rightarrow Can use Shor's order-finding algorithm

A Fundamental Lemma (17/17)

... Combining (12) with the smoothness of 24 we get:

$$
\begin{gathered}
\frac{1}{2}+\mathfrak{R}\left(\langle\psi|[2 i] P \oplus e^{2 i \pi\langle P[7], s+\hat{e}=2.7\rangle}\left|\psi^{\prime}\right\rangle-\frac{3}{4}\right. \\
\leq \\
\sum_{\infty} \sum_{\eta \in \mathbb{F}_{1}}\langle\mathscr{G}(\sigma, \eta+\infty) \times \mathbb{Z}\rangle \cdot \sqrt{1+\left[H_{n}<5\right]} \cdot \frac{1}{n} \cdot \sqrt{s^{2}-e_{[3 i]}\left(\psi^{t}, \phi\right)} \\
\leq \\
2 \pi r
\end{gathered}
$$

(r : radius of the fundamental circle)

Immediate Corollary

- The attack also works for Gaussian varieties of higher genus.

A simple proof of a useful inequality

- Lemma: $\frac{1}{4}>0$.
- Proof: $\frac{1}{4}=\left(\frac{1}{2}\right)^{2}$, which is a square.
- Also, there is a field with 4 elements, and no field with 0 elements, so that $4 \neq 0$, so that $\frac{1}{4}$ exists (and is $\neq 0$).
- (this non-constructive proof of existence of $\frac{1}{4}$ is enough for us).
- From the Lemma we deduce that, for any integer $n,\left(\frac{1}{4}\right)^{n}>0$.
- Summing the geometric series we obtain:

$$
\sum_{n \geqslant 1} \frac{1}{4^{n}}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{1}{3}>0
$$

- We obtain the following:

Proposition

The following inequality is true: $\frac{1}{3}>0$.

A proof of the Goldbach conjecture

- Up to now, the best known result on Goldbach is due to [Ramaré 95]: every even number is the sum of at most six primes.
- Dividing by three, we see that one third of every even number is the sum of at most one third of six primes.
- But one third of six is exactly two! -factorial
- In other words, the probability that an even n is the sum of two primes is $\geqslant \frac{1}{3}$.
- Since $\frac{1}{3}>0$ (as was proved previously), we can rewind and replay the proof enough times until this eventually happens.
- We just proved the Goldbach theorem!

Solving TWE in any dimension

Put together, frames \#14, \#17 and \#29 solve the "Teaching With Errors" problem when the dimension is prime. We now generalize the proof to any dimension n.

- (Easy case). Assume n is even. Then, by Euler-Goldbach, we can write $n=p+p^{\prime}$.
- By the extension theorem (Karatsuba-Strassen: we can trade expensive composites for cheaper primes assuming), we can combine a solution for p and one for p^{\prime} into a solution for n.
- (Hard case). Now assume that n is odd.
- It is possible, in probabilistic polynomial time, to find some $n^{\prime} \geqslant n$ which is even.
- (for example, pick $n^{\prime} \geqslant n$ uniformly random until n^{\prime} is even).
- The inclusion principle allows us to pull back a solution for n^{\prime} to a solution for n.

Final summary (1/2)

- From LWE in mid-characteristic to Goldbach's strong theorem back to TWE in even and odd prime cases and then any natural
- Subsumes much of 21st+ century computer science \& mathematics
- The proof can be made very compact (≈ 1 frame) using notation from frame \#278, as follows:

And the job is done!

- TWE $\Rightarrow \mathrm{P}=\mathrm{NP}($ Thm. $7 . \alpha) \Rightarrow \ldots$

