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The context

Context: Crypto implementation on observable devices

Objective: secure finite-field multiplication w/ leakage
▸ Implement (a,b)↦ c = a × b, a, b, c ∈ K

▸ Used in non-linear ops in sym. crypto (e.g. S-boxes)
▸ Input/outputs usually secret!

▸ Problem: computations leak information

▸ ↝ Need a way to compute a product w/o leaking (too much)
the operands & the result

▸ Our focus: higher-order (many shares) gadgets
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Basic idea

▸ Split a, b, c into shares (i.e. use a secret-sharing scheme)
▸ Typically simple and additive:

x = ∑d
i=0 xi , x0,...,d−1

$←Ð K, xd = x −∑d−1
i=0 xi

▸ Compute the operation over the shared operands; obtain a
shared result

▸ Ensure that neither of a, b, c can be (easily) recovered (e.g.
with fewer than d + 1 probes)

Prove security e.g. in:

▸ The probing model ↝ d-privacy (Ishai, Sahai & Wagner,
2003) / d-(S)NI (Beläıd et al., 2016)

▸ The noisy leakage model (Chari et al. ’99, Prouff & Rivain,
2013)

▸ (Reductions exist, cf. Duc et al., 2014, 2015)
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First attempt

▸ We want to compute c = ∑k ck = ∑i ai ×∑j bj = ∑i ,j aibj

▸ So maybe define ci = ∑d
j=0 aibj?

▸ Problem: any single ci reveals information about b

▸ One solution (ISW, 2003): find better partitions and
rerandomize using fresh masks

▸ Prove security in the probing model

▸ ‽ Scheduling of the operations is important (impacts the
probes available to the adversary)
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Masking complexity

▸ ISW provides a practical solution for masking a multiplication
▸ But the cost is quadratic in d : d-privacy requires:

▸ 2d(d + 1) sums
▸ (d + 1)2 products
▸ d(d + 1)/2 fresh random masks

▸ Decreasing the cost/overhead of masking is a major problem
▸ Use block ciphers that need few multiplications (e.g. ZORRO,

Gérard et al., 2013 (broken))
▸ Amortize the cost of masking several mult. (e.g. Coron et al.,

2016)
▸ Decrease the cost of masking a single mult. (e.g. Beläıd et al.,

2016, 2017)
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Quick defs.

Gadget

A gadget for a function f is a (randomized) circuit C on
(additively) shared intput/outputs x i , y j s.t. for every set of coins
R, (y1, . . . ,ym)←[ C(x1, . . . ,xn;R) satisfies:

⎛
⎝

v

∑
j=1

y1,j , . . . ,
v

∑
j=1

ym,j

⎞
⎠
= f

⎛
⎝

u

∑
j=1

x1,j , . . . ,
u

∑
j=1

xm,j
⎞
⎠

Probe

A probe on C maps a wire to the value it takes in a run of the
circuit
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A 3-NI multiplication gadget (Barthe et al., 2017)
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What about today?

▸ An extension to F2 of the matrix model (Beläıd et al., 2017)
for proving ((S)NI) security

▸ An efficient algorithm (& implementation) for testing
high-order security

▸ New variants of high-order multiplication gadgets with
reduced randomness complexity
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A composable security model

▸ The ISW d-privacy model is not composable: if C 1 and C 2

are d-private, C 2 ○C 1 isn’t necessarily so

▸ Barthe et al. (2016) introduced composable alternatives of
(strong) non-interference

▸ Use simulation-based definitions

▸ Roughly, P ∶= {p1,p2, . . .} on C is t-simula(ta)ble if for a fixed
input (x1,x2, . . .), all the distributions induced on P by R can
be simulated with the knowledge of ≤ t x1,i s; ≤ t x2,i s; etc.

▸ Then, C is d-NI iff. any set of at most d probes is
t ≤ d-simulable

▸ C is d-SNI iff. any set of at most d1 + d2 ≤ d probes is
d1-simulable, where d2 probes are on the output wires only

▸ And now SNI ○NI = SNI
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Examples

▸ x1,1 + r1 is 0-simulable

▸ x1,1 + x2,1 is 1-simulable (and not 0-...)

▸ {x1,1 + x1,2 + x1,3 + r1, r1} is 3-simulable (and not 0,1,2-...)
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A matrix model for non-interference

▸ Now only consider gadgets with (at most) two inputs a, b
(e.g. for multiplication)

▸ With only bilinear probes (i.e. affine functions of the ai , bj ,
aibj , rk)

▸ Then it is enough to consider linear combinations of the
probes to (dis-)prove (S)NI security (Beläıd et al., 2017; This
work)
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A linear condition on bilinear probes

Condition 3.2 (Beläıd et al., 2017)

A set of bilinear probes P = {p1, . . . ,p`} on a circuit C for a
function f ∶ K2 → K satisfies Cond. 3.2 iff. ∃λ ∈ K`,
M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1, and τ ∈ K s.t.

∑`
i=1 λipi = atMb + atµ + btν + τ and all the rows of the block

matrix (M µ) or all the columns of the block matrix (M
νt) are

non-zero

▸ No r -dependency: cannot be simulated with a uniform
distribution

▸ No zero rows/columns: full functional dependence on the
d + 1 shares of a/b
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Proving security with Cond 3.2

The previous condition is useful to analyse the security of a gadget

Theorem (Beläıd et al., 2017)

If P satisfies Cond. 3.2, then it is not d-simulable
If P is not d-simulable and #K > d + 1, then it satisfies Cond 3.2

Corollary (Beläıd et al., 2017)

If #K > d + 1 and no set of ≤ d probes on C satisfies Cond. 3.2,
then it is d-NI
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Not d-sim ⇒ Cond 3.2 (sketch)

Let P = {p1, . . . ,p`} be not d-simulable

▸ Compute an equiv. set P ′ = {p′1 = ∑i αipi , . . .} that does not
depend on any r and that is not d-simulable (always possible
using Gaussian elimination)

▸ So the matrix D = (M ′

1 µ1 ⋯M ′

`′ µ`′) that records the
dependence of P ′ on say, the ai s has no zero row

▸ Show that ∃Λ (encoding a linear comb. of the p′s) s.t. DΛ
has no zero row

▸ Guaranteed to exist if #K > d + 1 by
Schwartz-Zippel-DeMillo-Lipton (need a non-root of a (degree
d + 1)-(`′-variate) polynomial)
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Why this fails for F2

Take:

▸ d + 1 = 3

▸ p1 = a0b0 + a1b0

▸ p2 = a1b0 + a2b1

Then neither p1, p2, nor p1 + p2 depends on all of a0b∗, a1b∗,
a2b∗ (so their respective matrix encodings have a zero row) but it
is obvious that {p1,p2} is not 2-simulable

▸ But see that (e.g.) p1 could be alternatively completed by any
a2b∗ (which are always available) to be an attack satisfying
Cond 3.2

▸ In fact any linear comb. of ` probes that is not `-simulable is
already an attack! (matches the TNI variant of NI security)
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An alternative condition

Condition 3.2’

A set of bilinear probes P = {p1, . . . ,p`} on a circuit C for a
function f ∶ K2 → K satisfies Cond 3.2’ iff. ∃λ ∈ K`, wt(λ) = `,
M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1, and τ ∈ K s.t.

∑`
i=1 λipi = atMb + atµ + btν + τ and the block matrix (M µ)

(resp. the block matrix (M
νt)) has at least ` + 1 non-zero rows

(resp. columns)

Theorem

If a set P of ≤ d bilinear probes on a circuit C for a function
f ∶ K2 → K is not d-simulable then ∃P ′ ⊆ P s.t. P ′ satisfies Cond
3.2’



Pierre Karpman
Fast masking verification in char. two 2020–04–01 20/34

Proof (sketch)

▸ Compute {p′1, . . .} as before

▸ Each p′i has a “p” weight ≤ ` ≤ d and an “a” weight ≤ d + 1

▸ Show that ∃ a linear combination of the p′s with p weight < a
weight ↝

Lemma

Let C1, C2 be [n1, k], [n2 > n1, k] linear codes over K generated by
G 1, G 2 w/o zero columns, then the concatenated code C1,2

generated by (G 1 G 2) is s.t. ∃ c ∈ C1,2 w/ wt1(c) < wt2(c),
where wt1(⋅) (resp. wt2(⋅)) is the weight on the first n1 (resp. last
n2) coordinates

Proof: by induction, on (appropriately, iteratively) shortened codes
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Summary

▸ Got an easy-to check condition to prove NI security (and not
only detect attacks) even over F2

▸ (Not shown here) Easy to adapt to prove SNI security (not
explicit in previous work)

▸ (Not shown here) Easy proof that a secure scheme over F2

can be securely lifted to F2n (not explicit in previous work)

▸ (Not shown here) Can be adapted to robust probing (Faust et
al., 2018) to take glitches into account
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An immediate algorithm from Cond 3.2’

From now on K = F2

To prove the d-NI security of a gadget/circuit C (with only bilinear
probes):

▸ List all the possible probes P on C
▸ For every P ∈ ℘(P) of size ≤ d , check that no full-weight

linear combination of all elems of P satisfies Cond 3.2’
▸ Over F2, this is just ∑p∈P p

▸ Simple; costs ∑d
i=1 (#P

i
) vector additions

fCan be seen as a derandomized, proved variant of a heuristic
algorithm from Beläıd et al., 2016
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Reducing cost with dimension reduction

▸ Available probes typically include “elementary ones”, viz. ai ,
bj , aibj , rk

▸ It is easy to tell if an existing linear comb. of probes can be
completed to an attack using elementary probes
▸ E.g. a sum of < d probes that depends on all ai s and exactly

one r k
▸ So remove elementary probes from P and check a modified

Cond 3.2’

fAlready used (except for rk) by Beläıd et al., 2016
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Dimension reduction (cont.)

▸ Concrete gadgets may induce (non-elementary) probes that
are always “better” than others
▸ E.g. a0b0 + r 0 + a0b1 ≤ a0b0 + r 0 + a0b1 + a1b0

▸ (But a0b0 + r 0 + a0b1 + a1b0 Ã a0b0 + r 0 + a0b1 + a1b0 + r 1)

▸ So can reduce dimension further by removing the less useful
ones

▸ Formalizing a sufficient condition + checking that an explicit
filtering is valid is not too hard
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Efficient software implementation

Implementing the verification is straightforward. For all potential
attack set ∈ ℘(P) of weight ≤ d :

1 Sum the indicator matrices that encode the probes
dependence on a, b, r

2 Check (the appropriate variant of) Cond 3.2’, i.e. compute a
block Hamming weight and compare it to a threshold

To make this (a bit? a lot?) more efficient than a näıve implem:

▸ Use combination Gray codes for the enumeration

▸ Use vectorization to compute the sums & weights

▸ ↝ peak performance (@2.60 GHz) of ≈ 227.5 checks/s

Also, use parallelization
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Combination Gray codes

▸ Enumerate every element of {x ∈ ℘(P) ∶ wt(x) = k} as a
sequence x1, . . . s.t. #xi/xi+1 = 2

▸ So can compute ∑v∈xi+1
v from ∑v∈xi v using one addition and

one subtraction (independent of k)
▸ Several codes with this property exist; we use the

“Nijenhuis-Wilf-Tang-Liu” one whose combinations have
easy-to-compute (un)ranking maps to and from N
▸ So easy to split a search space for a parallel implementation
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Vectorized block Hamming weight with AVX512VL +
AVX512BW

Pretty easy up to d + 1 = 16:

int popcount256_16(__m256i v)

{

return

__builtin_popcountl(_mm256_cmpgt_epi16_mask(

v, _mm256_setzero_si256()));

↪

↪

}

Use several words for larger cases (too expensive to run till the end
anyways)



Pierre Karpman
Fast masking verification in char. two 2020–04–01 29/34

Masking schemes for finite field multiplication

Proving security

Computationally checking security in F2

Applications



Pierre Karpman
Fast masking verification in char. two 2020–04–01 30/34

Why are you doing this?

▸ Initial goal: prove the security at high-order of “new”
multiplication gadgets over F2 w/ reduced randomness
complexity

▸ Turns out those were already proposed by Barthe et al. in
2017 :( (but we still have better variants most of the time)

Soooo... what’s left?

▸ Beats state-of-the-art verification performance of
multiplication gadgets by three orders of magnitude

▸ Disprove a generalization conjecture from Barthe et al. (2017)

▸ Verify (S)NI multiplication up to order 11 (up from 7)

▸ Still some improvements, e.g. 17% (resp. 19%) randomness
gain for 8-share SNI multiplication (resp. refreshing)
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Verification performance

For one 8-SNI multiplication gadget:

▸ The latest version of maskVerif (Barthe et al., 2019) takes 13
days on up to 4 threads to prove security

▸ Our software does it in < 10 minutes on 1 thread

For one 11-SNI multiplication gadget:

▸ maskVerif: not run...

▸ Our software: used up to 40 nodes of the Dahu cluster (⇒ up
to 1280 cores) to enumerate ≈ 254.48 possible attack sets
(down from 259.76 before non-elementary filtering)
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SNI security is hard

Roughly, to get SNI security:

▸ Start from an NI-secure scheme

▸ Add refreshing before the output

▸ So Barthe et al. (2017) conjectured that a single refreshing as
above was always enough

▸ We did too (“independently”, 3 years after...); checked; it
fails from d = 10 if a rotation by one is used for the refreshing
▸ Yet, used as is in the d + 1 ∈ {16,32} implementations by

Journault and Standaert (2017)??

▸ But a rotation by two works there... always the case? (We
don’t know...)

▸ It’s also often possible to add even fewer, e.g. 4 masks
(instead of 8) for d = 7 ← one of our improvements!
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SNI security is hard

6-NI:

s00 r00 s01 s10 r01 s02 s20 r07 s03 s30 r08

s11 r01 s12 s21 r02 s13 s31 r08 s14 s41 r09

s22 r02 s23 s32 r03 s24 s42 r09 s25 s52 r10

s33 r03 s34 s43 r04 s35 s53 r10 s36 s63 r11

s44 r04 s45 s54 r05 s46 s64 r11 s40 s04 r12

s55 r05 s56 s65 r06 s50 s05 r12 s51 s15 r13

s66 r06 s60 s06 r00 s61 s16 r13 s62 s26 r07
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SNI security is hard

6-SNI:

s00 r00 s01 s10 r01 s02 s20 r07 s03 s30 r08 r14 r20

s11 r01 s12 s21 r02 s13 s31 r08 s14 s41 r09 r15 r14

s22 r02 s23 s32 r03 s24 s42 r09 s25 s52 r10 r16 r15

s33 r03 s34 s43 r04 s35 s53 r10 s36 s63 r11 r17 r16

s44 r04 s45 s54 r05 s46 s64 r11 s40 s04 r12 r18 r17

s55 r05 s56 s65 r06 s50 s05 r12 s51 s15 r13 r19 r18

s66 r06 s60 s06 r00 s61 s16 r13 s62 s26 r07 r20 r19
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SNI security is hard

Roughly, to get SNI security:

▸ Start from an NI-secure scheme

▸ Add refreshing before the output

▸ So Barthe et al. (2017) conjectured that a single refreshing as
above was always enough

▸ We did too (“independently”, 3 years after...); checked; it
fails from d = 10 if a rotation by one is used for the refreshing
▸ Yet, used as is in the d + 1 ∈ {16,32} implementations by

Journault and Standaert (2017)??

▸ But a rotation by two works there... always the case? (We
don’t know...)

▸ It’s also often possible to add even fewer, e.g. 4 masks
(instead of 8) for d = 7 ← one of our improvements!
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State-of-the-art 7-SNI multiplication

7-SNI multiplication with 20 masks:

s00 r00 s01 s10 r01 s02 s20 r08 s03 s30 r09 s04 r20

s11 r01 s12 s21 r02 s13 s31 r09 s14 s41 r10 s15 r21

s22 r02 s23 s32 r03 s24 s42 r10 s25 s52 r11 s26 r22

s33 r03 s34 s43 r04 s35 s53 r11 s36 s63 r12 s37 r23

s44 r04 s45 s54 r05 s46 s64 r12 s47 s74 r13 s40 r20

s55 r05 s56 s65 r06 s57 s75 r13 s50 s05 r14 s51 r21

s66 r06 s67 s76 r07 s60 s06 r14 s61 s16 r15 s62 r22

s77 r07 s70 s07 r00 s71 s17 r15 s72 s27 r08 s73 r23
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