The LITTLUN S-box and the FLY block cipher

Pierre Karpman

Inria and École polytechnique, France Nanyang Technological University, Singapore

RISC Seminar, CWI, Amsterdam 2016–05–25

LITTLUN S-box, FLY block cipher

2016-05-25 1/39 Pierre Karpman

Context

Counting active S-boxes — an example with PRESENT

LITTLUN: an 8-bit S-box with branch number three

The FLY block cipher

LITTLUN S-box, FLY block cipher

2016–05–25 **2/39** Pierre Karpman

Context

Counting active S-boxes — an example with PRESENT

LITTLUN: an 8-bit S-box with branch number three

The FLY block cipher

LITTLUN S-box, FLY block cipher

2016–05–25 **3/39** Pierre Karpman

Block cipher

A block cipher is a family of permutations indexed by a key: $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^{n} \rightarrow \{0,1\}^{n}$ s.t. $\forall k \in \{0,1\}^{\kappa}$, $\mathcal{E}(k,\cdot)$ is a permutation of $\{0,1\}^{n}$ (in the binary case)

- A fundamental primitive in (secret-key) cryptography
- Useful to achieve confidentiality and/or authentication
- (Needs to be used with a mode of operation)

Ideal block cipher model

Every key of $\{0,1\}^{\kappa}$ defines a permutation i.i.d over the ones of $\{0,1\}^n$

- Completely impractical to achieve in general
- Serves as a basis to define e.g. PRP security

Key-recovery security

Can I recover k "more efficiently" than by using a generic algorithm given some access to $\mathcal{E}(k,\cdot)$

Usual view when analysing specific ciphers

LITTLUN S-box, FLY block cipher

AES is good!

- AES/Rijndael128, winner of the AES competition (2000)
- ▶ 128-bit blocks, {128,192,256}-bit keys
- Fast & versatile
- Good security
- But is AES all what you need?

AES-128 performance on constraint devices

- Serial implementation of AES: ≈ 2400 GE (Moradi et al., 2011) (226 cyc. per block)
- On 8-bit microcontroller:
 - ▶ 146 cpb, (970 B ROM + 18 RAM) (NSA, 2014)
 - 125 cpb (1912 B ROM + 432 B RAM) (Osvik et al., 2010; Osvik, 2014)
- Not bad at all, but can do (slightly better)
- Lightweight crypto: try to do better than AES in some specific situations (not easy)

- PRESENT-128 (64-bit block, 128-bit key) (Bogdanov et al., 2007)
 - Round-based implementation: 1884 GE (Poschmann, 2009) (Serial: 1391)
 - Not efficient in software
- PRIDE (64-bit block, 64-bit key + 64-bit for whitening) (Albrecht et al., 2014)
 - On 8-bit microcontrollers, 189 cpb (266 B ROM)

Two members in a big family: SIMON and SPECK (NSA, 2013)

- Many possible block & key sizes
- Efficient both in hardware and software
- SPECK64-128 on 8-bit microcontrollers
 - 154 cpb (218 B ROM) (NSA, 2015)
 - ► 122 cpb (628 B ROM + 108 B RAM) (NSA, 2015)
- SIMON64-128 on 8-bit microcontrollers
 - 290 cpb (253 B ROM) (NSA, 2015)
 - 221 cpb (436 B ROM + 176 B RAM) (NSA, 2015)

Our goal for today

- Design a block cipher (64-bit blocks, 128-bit keys) with good 8-bit implementation
- Roughly comparable with SPECK/PRIDE/SIMON for efficiency
- ▶ With easy arguments v. statistical attacks (like PRIDE)
- With efficient countermeasures v. side-channel attacks (like SIMON)
- Conceptually simple

- Use a pure SPN structure like PRESENT
- Combine properties of the S and P layer to count active S-boxes (good for security)
- Use a bitsliced S-box (good for implementation)

Context

Counting active S-boxes — an example with PRESENT

LITTLUN: an 8-bit S-box with branch number three

The FLY block cipher

LITTLUN S-box, FLY block cipher

2016-05-25 **12/39** Pierre Karpman

A general strategy

Active S-box

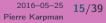
An S-box is *active* in a differential (linear) trail if it has a non-zero input difference (mask) in this trail

- Lower bound the # of active S-boxes for any trail on r rounds
- MDP (MLP) of the S-box ⇒ upper bound on the probability (bias) of r-round trails
- ightarrow = Easy arguments for resistance v. statistical attacks

A strategy for pure SPNs (1)

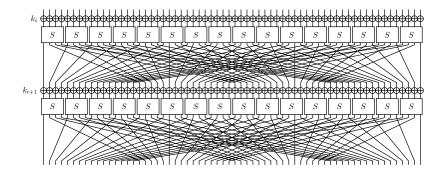
Branch number of an S-box The diff. branch number of an S-box δ is: $\min_{\{(a,b)\neq(0,0)|\delta_{\delta}(a,b)\neq0\}} wt(a) + wt(b)$ The lin. branch number of an S-box δ is:

 $\min_{\{(a,b)\neq(0,0)|\mathcal{L}_{\mathcal{S}}(a,b)\neq0\}} \operatorname{wt}(a) + \operatorname{wt}(b)$


 Reminiscent of the B.N. of a linear mapping (≈ min. distance of a linear code)

LITTLUN S-box, FLY block cipher

2016-05-25 14/39 Pierre Karpman

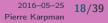

A strategy for pure SPNs (2)

- **1** Find an S-box with high diff/lin B.N.
- 2 Find a bit permutation with "good" diffusion
- 3 Derive a lower bound on # of active S-boxes

- ▶ 4-bit S-box with diff B.N. 3, MDP 2⁻²
- At least 10 diff. active S-boxes every 5 rounds
- ▶ ⇒ every 5-round diff. trail has proba $< 2^{-20}$
- (Lin B.N. is only 2, corresponding argument is a bit more complex and less powerful)

PRESENT round function in a picture

LITTLUN S-box, FLY block cipher


2016-05-25 17/39 Pierre Karpman

Conclusion on PRESENT

- Good performance in hardware
- Bit permutation annoying in software
- Can we find a more balanced similar structure?

Ø

- $\blacktriangleright \Rightarrow$ Make it square: use eight 8-bit S-boxes
- Bit permutation \equiv 8-bit word rotations
- Goal: find an appropriate S-box

Context

Counting active S-boxes — an example with PRESENT

LITTLUN: an 8-bit S-box with branch number three

The FLY block cipher

LITTLUN S-box, FLY block cipher

2016-05-25 **19/39** Pierre Karpman

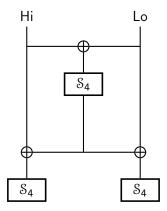
Design criteria for the S-box

- Diff. & lin. branch number ≥ 3
- ▶ MDP $\leq 2^{-4}$, linearity $\leq 2^{6}$ (= linear bias $\leq 2^{-3}$)
- Efficient bitsliced implementation
- Low overall number of operations

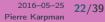
Strategy:

- Start from a "nice" 4-bit S-box
- ▶ Use a $2 \times 4 \rightarrow 8$ construction (Feistel, Misty, Lai-Massey, ...)

Lai-Massey structure for S-boxes

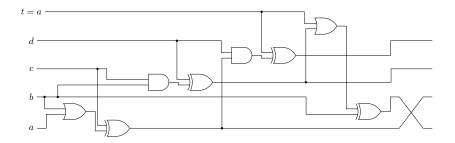

- Makes 3 calls to the 4-bit S-box with depth 2
- MDP & linarity of the 8-bit S-box \approx square the one on 4-bit
- ▶ 4-bit S-box has Diff. B.N. $3 \Rightarrow$ 8-bit S-box has Diff. B.N. 3
- Efficient vector implementations with SSSE3 (not so useful here)

♦


- Condition on Diff. B.N. on 4-bit not necessary
- Lin. B.N. on 8-bit may be 3 (not possible for good 4-bit)

LITTLUN S-box, FLY block cipher

Lai-Massey in a picture



LITTLUN S-box, FLY block cipher

- Initial strategy: use fastest SERPENT S-box (has B.N. 3) (Biham et al., 1998)
- ▶ In the end: use member of Class 13 (Ulrich et al., 2011)
 - ▶ Not B.N. 3 but \Rightarrow B.N. 3 on 8-bit anyway
 - Min. # of L. and N.L. gates possible for an optimal 4-bit (4 each)
 - Very efficient bitsliced implementations

"LITTLUN-S4" in a picture

LITTLUN S-box, FLY block cipher

2016-05-25 24/39 Pierre Karpman

Bitsliced implementation of LITTLUN-S4

t	=	b;	b	=	a;	b	^=	с;	//	(B):	с	î	(a	1	Ъ)
с	&=	t;	с	^=	d;				//	(C):	d	^	(c	ย	ь)
d	&=	b;	d	^=	a;				//	(D):	a	^	(d	ย	B)
a	=	с;	a	^=	t;				11	(A):	b	^	(a	1	C)

▶ 9 instructions w. 5 registers

LITTLUN S-box, FLY block cipher

Bitsliced implementation of the 8-bit S-box "LITTLUN1"

```
t = a ^ e;
u = b ^ f;
v = c ^ g;
w = d ^ h;
S4(t,u,v,w); // uses one more extra register x
a ^= t; e ^= t;
b ^= u; f ^= u;
c ^= v; g ^= v;
d ^= w; h ^= w;
S4(a,b,c,d); // reuses t as extra
S4(e,f,g,h); // reuses u as extra
```

43 instructions w. 13 registers

LITTLUN S-box, FLY block cipher

2016–05–25 26/39 Pierre Karpman

- LITTLUN1 meets all the criteria
- Only downside: its inverse is more expensive in bitsliced form (59 inst. v. 43)

LITTLUN S-box, FLY block cipher

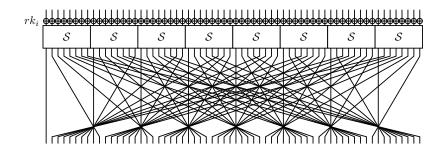
2016-05-25 27/39 Pierre Karpman

Context

Counting active S-boxes — an example with PRESENT

LITTLUN: an 8-bit S-box with branch number three

The FLY block cipher


LITTLUN S-box, FLY block cipher

2016-05-25 28/39 Pierre Karpman

A simple design

- 64-bit blocks, 128-bit key
- Round function, optimized for 8-bit microcontrollers:
 - Apply LITTLUN1 in bitsliced form to $X_0, X_1, ..., X_7$ (eight 8-bit words)
 - **2** Rotate X_i by *i* to the left
- 20 rounds for the full cipher
- Two key schedules (elementary v. RKA-resistant) (could be improved)

The FLY round function in a picture

LITTLUN S-box, FLY block cipher

2016-05-25 **30/39** Pierre Karpman

- Permutation diffuses "optimally"
- ► From the B.N. of the S-box \Rightarrow at least 6 active S-boxes every 4 rounds
- ➤ ⇒ at least 18 active S-boxes for 12 rounds ⇒ no single trail with high prob./bias expected
- Other attacks (MiTM, algebraic, integral, impossible diff.) less a concern

- Entire round function + on-the-fly simple key schedule = 76 inst. on ATmega
- ▶ 8 more than PRIDE, but with 1.5× more (eqv.) active S-boxes
- ▶ $\Rightarrow \approx 200$ cpb., small code (complete perfs. on AVR TBD)

Round function assembly (S-box application)

; /S/		
movw t0, s0	eor s0, t0	or s0, s2
movw t2, s2	eor s1, t1	eor s0, t0
eor t0, s4	eor s2, t2	
eor t1, s5	eor s3, t3	mov t0, s5
eor t2, s6	eor s4, t0	<mark>or</mark> s5, s4
eor t3, s7	eor s5, t1	eor s5, s6
	eor s6, t2	and s6, t0
mov t4, t1	eor s7, t3	eor s6, s7
or t1, t0		and s7, s5
eor t1, t2	mov t0, s1	eor s7, s4
and t2, t4	or s1, s0	<mark>or</mark> s4, s6
eor t2, t3	eor s1, s2	eor s4, t0
and t3, t1	and s2, t0	
eor t3, t0	eor s2, s3	
or t0, t2	and s3, s1	
eor t0, t4	eor s3, s0	

LITTLUN S-box, FLY block cipher

2016-05-25 **33/39** Pierre Karpman

Round function assembly (Bit permutation)

; /P/ rol s1 rol s2 rol s2 swap s3 ror s3 swap s4 swap s5 rol s5 ror s6 ror s6 ror s7

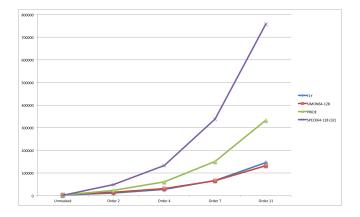
LITTLUN S-box, FLY block cipher

2016-05-25 **34/39** Pierre Karpman

Round function assembly (Key application & update)

; / A R K /							
eor s0,	k0	eor	k0,	k8	mov	t0,	c0
eor s1,	k1	eor	k1,	k9	andi	t0,	1
eor s2,	k2	eor	k2,	k10	dec	t0	
eor s3,	k3	eor	k3,	k11	andi	t0,	177
eor s4,	k4	eor	k4,	k12	lsr	c0	
eor s5,	k5	eor	k5,	k13	eor	c0,	t0
eor s6,	k6	eor	k6,	k14			
eor s7,	k7	eor	k7,	k15			
eor s0.	c0						

LITTLUN S-box, FLY block cipher


eor s1, 255

2016-05-25 **35/39** Pierre Karpman

- Intented implementation target is prone to SCA
- $\blacktriangleright \Rightarrow$ should also consider the cost of countermeasures v. e.g. DPA
- We use the masking compiler of Barthe et al. to obtain masked implementation at various orders (2015)
- Comparison with SIMON/SPECK/PRIDE is favourable

Masking cost at various orders

 Generate masked implementation, count #operations to encrypt one block (rough measure)

LITTLUN S-box, FLY block cipher

2016-05-25 **37/39** Pierre Karpman

Conclusion

- LITTLUN1 is a cheap S-box with good diffusion properties
- It is well-suited to a pure SPN design on 64-bit blocks
- FLY is a bitsliced cipher targeting 8-bit microcontrollers
- One of the few bitsliced ciphers with simple security arguments
- Compact and efficient w. or w/o. masking

LITTLUN S-box, FLY block cipher

2016-05-25 **39/39** Pierre Karpman