
Introduction to cryptology

TD#4

2022-W10,. . .

Exercise 1: MAC with a small state

A designer wants to design a MAC using a block cipher E : {0, 1}128×{0, 1}32 → {0, 1}32.
He wants to use a variant of CBC-MAC, but with larger tags than what a direct application
using E would allow. Specifically, he wishes for 128-bit tags. The result is the following.
On input (k, k0, k1, k2, k3,m), compute:

x := CBC-Encrypt[E](k, 0,m) y0 := E (k0, x) y1 := E (k1, x) y2 := E (k2, x) y3 := E (k3, x),

and output y := y0||y1||y2||y3.

Q. 1: How many possible values can be taken by x (for any k, m).

Q. 2: How many possible values can be taken by y, for a fixed MAC key (k, k0, k1, k2, k3)?

Q. 3: Give a strategy that allows to gather all possible tags for a fixed MAC key, with
time, memory and query cost ≈ 232 (assuming for simplicity that if the input message is
32-bit long, no padding is performed in the CBC encryption).

Q. 4 Assuming that the precomputation of the previous question has been performed,
what is the forgery probability for a random message? Is this MAC a good MAC?

Q. 5 Is the modified scheme that on input (k, k0, k1, k2, k3,m) computes:

x := CBC-Encrypt[E](k, 0,m) y0 := E (k0, x) y1 := E (k1, y0) y2 := E (k2, y1) y3 := E (k3, y2),

and outputs y := y0||y1||y2||y3 protected against the above attack?

Exercise 2: MAC definitions; RC4-MAC (Exam ‘21)

We first consider a deterministic MAC M : {0, 1}κ ×X → {0, 1}n.

Q.1: Suppose that you know a universal forgery A for M that wins the universal forgery
game with probability pU and that runs in time tU and makes qU queries to its oracle.

1. Specify an existential forgery A′ for M that uses A as a black box.

2. Analyse the cost tE and qE of A′ and its success probability pE .

Q.2: Suppose that you know an existential forgery A for M that wins the existential
forgery game with probability pE and that runs in time tE and makes qE queries to its
oracle.

1. Specify a PRF distinguisher for M that runs in time tF ≈ tE and makes qF ≈ qE

queries to its oracle.

1

https://membres-ljk.imag.fr/Pierre.Karpman/cry_intro2021_td4.pdf

2. Give a lower bound for AdvPRF
M (qF , tF) by analysing the advantage of your distin-

guisher.

3. Is the following (informally stated) scenario possible: “M is vulnerable to an exis-
tential forgery attack, but it is hard to distinguish from a random function”?

4. Show that the following (informally stated scenario) is possible: “There is no efficient
existential forgery attack on M , but it is easy to distinguish it from a random
function”. Only a sketch of proof is required here.

Q.3: Recall that an assumption A1 is said to be stronger than an assumption A2 if
breaking A2 implies breaking A1 with a similar cost, but breaking A1 does not necessarily
imply breaking A2 with a similar cost. Consider the three following (informally stated)
assumptions: A1: M is hard to distinguish from a random function; A2: there is no
efficient universal forgery on M ; A3: there is no existential forgery on M .

1. Order the assumptions A1, A2, A3 from weakest to strongest. Be careful to justify
your answer.

2. Suppose that you need a MAC algorithm, and are magically given access to one that
satisfies an assumption that you are free to choose; which of A1, A2 or A3 would you
pick (and why)?

b

RC4 is a stream cipher that can be used to (poorly) encrypt binary strings of arbitrary
length in the following way:

1. Two communicating parties share a secret key k.

2. For each new plaintext p to be encrypted, one picks a unique initialisation vector v.

3. One runs a setup algorithm on the pair (k, v) that returns an initial state s (that
depends on both k and v).

4. One runs the RC4 keystream generator on s, producing a keystream z of the same
length as p.

5. The encryption of p is returned as c := p⊕ z, along with the initialisation vector v.

A designer suggests to use RC4 as the basis of a MAC algorithm. For simplicity, we
assume that the input is at least 128-bit long, or that it has otherwise been padded up to
that length (or longer) using an appropriate injective padding scheme. To authenticate
a message one runs RC4 encryption on the input and returns the last 128 bits of the
ciphertext as a tag. In more details:

1. Two communicating parties share a secret key k.

2. One runs a setup algorithm on the pair (k, 0) that returns an initial state s.

3. For each new input x to be authenticated, one runs the RC4 keystream generator
on s, producing a keystream z of the same length as x.

4. One encrypts x as c := x⊕z; the last 128 bits of c are returned as the authentication
tag of x.

Q.4:

1. Give (and analyse) a very efficient attack on RC4-MAC with respect to one of the
three security notions studied in this exercise.

2

https://membres-ljk.imag.fr/Pierre.Karpman/cry_intro2021_td4.pdf

