2022-W10,...

Exercise 1: MAC with a small state

A designer wants to design a MAC using a block cipher $E:\{0,1\}^{128} \times\{0,1\}^{32} \rightarrow\{0,1\}^{32}$. He wants to use a variant of CBC-MAC, but with larger tags than what a direct application using E would allow. Specifically, he wishes for 128 -bit tags. The result is the following. On input ($k, k_{0}, k_{1}, k_{2}, k_{3}, m$), compute:
$x:=\mathrm{CBC}-\operatorname{Encrypt}[E](k, 0, m) \quad y_{0}:=E\left(k_{0}, x\right) \quad y_{1}:=E\left(k_{1}, x\right) \quad y_{2}:=E\left(k_{2}, x\right) \quad y_{3}:=E\left(k_{3}, x\right)$,
and output $y:=y_{0}\left\|y_{1}\right\| y_{2} \| y_{3}$.
Q. 1: How many possible values can be taken by x (for any k, m).
Q. 2: How many possible values can be taken by y, for a fixed MAC key $\left(k, k_{0}, k_{1}, k_{2}, k_{3}\right)$?
Q. 3: Give a strategy that allows to gather all possible tags for a fixed MAC key, with time, memory and query cost $\approx 2^{32}$ (assuming for simplicity that if the input message is 32 -bit long, no padding is performed in the CBC encryption).
Q. 4 Assuming that the precomputation of the previous question has been performed, what is the forgery probability for a random message? Is this MAC a good MAC?
Q. 5 Is the modified scheme that on input $\left(k, k_{0}, k_{1}, k_{2}, k_{3}, m\right)$ computes:
$x:=\mathrm{CBC}-\operatorname{Encrypt}[E](k, 0, m) \quad y_{0}:=E\left(k_{0}, x\right) \quad y_{1}:=E\left(k_{1}, y_{0}\right) \quad y_{2}:=E\left(k_{2}, y_{1}\right) \quad y_{3}:=E\left(k_{3}, y_{2}\right)$,
and outputs $y:=y_{0}\left\|y_{1}\right\| y_{2} \| y_{3}$ protected against the above attack?

Exercise 2: MAC definitions; RC4-MAC (Exam '21)

We first consider a deterministic MAC $M:\{0,1\}^{\kappa} \times \mathcal{X} \rightarrow\{0,1\}^{n}$.
Q.1: Suppose that you know a universal forgery A for M that wins the universal forgery game with probability p^{U} and that runs in time t^{U} and makes q^{U} queries to its oracle.

1. Specify an existential forgery A^{\prime} for M that uses A as a black box.
2. Analyse the cost t^{E} and q^{E} of A^{\prime} and its success probability p^{E}.
Q.2: Suppose that you know an existential forgery A for M that wins the existential forgery game with probability p^{E} and that runs in time t^{E} and makes q^{E} queries to its oracle.
3. Specify a PRF distinguisher for M that runs in time $t^{F} \approx t^{E}$ and makes $q^{F} \approx q^{E}$ queries to its oracle.
4. Give a lower bound for $\operatorname{Adv}_{M}^{\mathrm{PRF}}\left(q^{F}, t^{F}\right)$ by analysing the advantage of your distinguisher.
5. Is the following (informally stated) scenario possible: " M is vulnerable to an existential forgery attack, but it is hard to distinguish from a random function"?
6. Show that the following (informally stated scenario) is possible: "There is no efficient existential forgery attack on M, but it is easy to distinguish it from a random function". Only a sketch of proof is required here.
Q.3: Recall that an assumption A_{1} is said to be stronger than an assumption A_{2} if breaking A_{2} implies breaking A_{1} with a similar cost, but breaking A_{1} does not necessarily imply breaking A_{2} with a similar cost. Consider the three following (informally stated) assumptions: $A_{1}: M$ is hard to distinguish from a random function; A_{2} : there is no efficient universal forgery on $M ; A_{3}$: there is no existential forgery on M.
7. Order the assumptions A_{1}, A_{2}, A_{3} from weakest to strongest. Be careful to justify your answer.
8. Suppose that you need a MAC algorithm, and are magically given access to one that satisfies an assumption that you are free to choose; which of A_{1}, A_{2} or A_{3} would you pick (and why)?

RC4 is a stream cipher that can be used to (poorly) encrypt binary strings of arbitrary length in the following way:

1. Two communicating parties share a secret key k.
2. For each new plaintext p to be encrypted, one picks a unique initialisation vector v.
3. One runs a setup algorithm on the pair (k, v) that returns an initial state s (that depends on both k and v).
4. One runs the RC4 keystream generator on s, producing a keystream z of the same length as p.
5. The encryption of p is returned as $c:=p \oplus z$, along with the initialisation vector v.

A designer suggests to use RC4 as the basis of a MAC algorithm. For simplicity, we assume that the input is at least 128 -bit long, or that it has otherwise been padded up to that length (or longer) using an appropriate injective padding scheme. To authenticate a message one runs RC 4 encryption on the input and returns the last 128 bits of the ciphertext as a tag. In more details:

1. Two communicating parties share a secret key k.
2. One runs a setup algorithm on the pair $(k, 0)$ that returns an initial state s.
3. For each new input x to be authenticated, one runs the RC4 keystream generator on s, producing a keystream z of the same length as x.
4. One encrypts x as $c:=x \oplus z$; the last 128 bits of c are returned as the authentication tag of x.

Q.4:

1. Give (and analyse) a very efficient attack on RC4-MAC with respect to one of the three security notions studied in this exercise.
