Introduction to cryptology TD#2

2022-W06,...

Exercise 1: PRPs

Let $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher for which there is a subset $\mathcal{K}' \subset \{0,1\}^{\kappa}$ of weak keys of size 2^w such that if $k \in \mathcal{K}', \mathcal{E}(k, \cdot) : x \mapsto x$.

Q. 1: Give a lower-bound for $\mathbf{Adv}_{\mathcal{E}}^{\mathrm{PRP}}(1,1)$.

Q. 2: Some mode of operation of block ciphers rely on the fact that $\mathcal{E}(k,0)$ is an unpredictable value when k is picked uniformly at random and kept secret (with 0 denoting the all-zero binary string).

Show that this is a reasonable assumption. More precisely, give a lower-bound on $\mathbf{Adv}_{\mathcal{E}}^{\mathrm{PRP}}(1,1)$ assuming that one can predict this value with unit time and success probability p.

Exercise 2: Format-preserving encryption (Adapted from M2's exam, 2021)

A format-preserving block cipher is a block cipher $\mathcal{E} : \{0,1\}^{\kappa} \times S \to S$ where S is an arbitrary finite set (that is S is not necessarily equal to $\{0,1\}^n$ for some n). For instance, S could be $\prod_{\leq 2^{128}}$, the set of primes less than 2^{128} .

The cycle walking algorithm is a method to convert a block cipher $\mathcal{E} : \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ into $\mathcal{E}' : \{0,1\}^{\kappa} \times \mathcal{S} \to \mathcal{S}$ for any $\mathcal{S} \subseteq \{0,1\}^n$ as long as it is efficient to test if an element of $\{0,1\}^n$ is in \mathcal{S} . It works as follows: to encrypt $x \in \mathcal{S}$ with the key k, compute $x' := \mathcal{E}(k, x)$. If $x' \in \mathcal{S}$ then return x'; otherwise iterate the process by computing $x'' = \mathcal{E}(k, x')$ and testing if it is in \mathcal{S} , etc.

Q.1

- 1. Give an algorithm for the inverse \mathcal{E}'^{-1} : $\{0,1\}^{\kappa} \times S \to S$ of a block cipher \mathcal{E}' over S obtained from cycle walking applied to some suitable block cipher \mathcal{E} .
- 2. Show that the condition that $S \subseteq \{0,1\}^n$ be efficiently testable is not enough to guarantee that cycle walking will result in an efficient block cipher.

We now suppose the existence of a black-box algorithm that efficiently converts a block cipher $\mathcal{E} : \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ into $\mathcal{E}' : \{0,1\}^{\kappa} \times \{0,1\}^{n'} \to \{0,1\}^{n'}$ for any 0 < n' < n.

Q.2

- 1. How does the existence of this black-box allow to remedy the efficiency problem from the previous question in some cases?
- 2. Are there still sets for which cycle walking is inefficient?

Exercise 3: PRP-PRF switching (Exam '21)

We first consider an oracle $\mathbb{O}: \{0,1\}^n \to \{0,1\}^n$, which can be one of two things:

- In the *PRP world*, $\mathbb{O} \leftarrow \text{Perms}(\{0,1\}^n)$. Said otherwise, it samples its outputs uniformly from $\{0,1\}^n$ without replacement.
- In the *PRF world*, $\mathbb{O} \leftarrow$ Funcs($\{0,1\}^n$). Said otherwise, it samples its outputs uniformly from $\{0,1\}^n$ with replacement.

Q.1: We consider an algorithm $A_q^{\mathbb{O}}$ which makes q (distinct) queries x_1, \ldots, x_q to its oracle \mathbb{O} .

Give an estimate for the probability $\in [0,1]$ that there is a collision between two outputs of \mathbb{O} in the PRP (resp. PRF) world, i.e. estimate the following:

1.
$$p_q^P := \Pr[\exists i, j \neq i, \mathbb{O}(x_i) = \mathbb{O}(x_j) : \mathbb{O} \leftarrow \operatorname{Perms}(\{0, 1\}^n)];$$

2.
$$p_q^F := \Pr[\exists i, j \neq i, \mathbb{O}(x_i) = \mathbb{O}(x_j) : \mathbb{O} \leftarrow \operatorname{Funcs}(\{0, 1\}^n)].$$

Only a brief justification of your answers is necessary.

Q.2: Using your answers to the previous question:

- 1. Specify a distinguisher $A^{\mathbb{O}}$ that returns 1 if \mathbb{O} is believed to be in the PRP world, and 0 if it is believed to be in the PRF world.
- 2. Estimate its advantage $|\Pr[A_q^{\mathbb{O}}() = 1 : \mathbb{O} \leftarrow \operatorname{Perms}(\{0, 1\}^n)] \Pr[A_q^{\mathbb{O}}() = 1 : \mathbb{O} \leftarrow \operatorname{Funcs}(\{0, 1\}^n)]|$ in function of the number of queries q made to the oracle only (i.e. where its running time may be arbitrary).¹

Q.3: We now consider a block cipher $\mathcal{E} : \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ s.t. $\operatorname{Adv}_{\mathcal{E}}^{\operatorname{PRP}}(q,t) = t/2^{\kappa}$ when $q = \Omega(n/\kappa)$. We wish to analyse \mathcal{E} in a "PRF setting". You may now assume that the advantage of your distinguisher from **Q.2** remains the same as the one you computed as long as $t = \Omega(q)$.

1. Based on your distinguisher from **Q.2** and the definition of \mathcal{E} , give a lower-bound for $\mathbf{Adv}_{\mathcal{E}}^{\mathrm{PRF}}(q,t)$. You do not need to specify a matching distinguisher.

Q.4: We now consider a family of functions $\mathcal{F} : \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ s.t. one has $\mathbf{Adv}_{\mathcal{F}}^{\mathrm{PRF}}(q,t) = t/2^{\kappa}$ when $q = \Omega(n/\kappa)$.

1. Is it possible to analyse \mathcal{F} in a "PRP setting", i.e. to study $\mathbf{Adv}_{\mathcal{F}}^{\text{PRP}}(q,t)$?

Q.5:

- 1. Is it possible and meaningful to use a "good PRP" block cipher $\mathcal{E} : \{0,1\}^{\kappa} \times \{0,1\}^n \rightarrow \{0,1\}^n$ in a context where a "good PRF" family of functions $\mathcal{F} : \{0,1\}^{\kappa} \times \{0,1\}^n \rightarrow \{0,1\}^n$ is expected? If yes, what would one "lose" by doing so?
- 2. Is it possible and meaningful to use a "good PRF" family of functions $\mathcal{F} : \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ in a context where a "good PRP" block cipher $\mathcal{E} : \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ is expected? If yes, what would one "lose" by doing so?

¹This is usually called an *information-theoretic* distinguisher, or a distinguisher in the *information* theory setting.