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Instructions

— One two-sided A4 page of (handwritten or typed) notes allowed.

— Except indicated otherwise, answers must be carefully justified to get maximum credit.

— Not all questions are independent, but you may admit a result from a previous ques-
tion by clearly stating it.

— You may answer in English or French.

— Duration: 3 hours.

Notation & definitions

We recall some notation and definitions. The definitions are provided for context for Ex-
ercises 1 and 4. However, since no formal proofs need to be given in those exercises, most
of the details given here can actually be ignored.

— For any finite set S, we write X � S to mean that the random variable X is sampled
uniformly from S. Furthermore, in notation such as X � S, Y � S, the samplings
of X and Y are independent (except specified otherwise).

— ·||· denotes string concatenation.

Definition 1 (PRP advantage). Let E : K × X → X be a block cipher over the finite set
X . The PRP advantage of E is defined as: AdvPRP

E (q, t) =

max
Aq,t

|Pr[AO
q,t() = 1 : O� Perms(X )]

−Pr[AO
q,t() = 1 : O = E (k, ·), k � K]|

Where Perms(X ) denotes the set of all permutations over the finite set X , and AO
q,t denotes

an algorithm that runs in time t and makes q queries to the oracle O it is given access to.

Definition 2 (IND-CPA (PKC)). Let (Enc,Dec) be a public-key encryption scheme (where
Enc : K×X → X ′ is a not-necessarily deterministic encryption function that takes as input a
public key and a message and returns a ciphertext, and Dec : K′ ×X ′ → X is a decryption
function that takes as input a private key and a ciphertext and returns a message. A
functional requirement is that if ks is the private key corresponding to the public key kp,
Dec(ks,Enc(kp, x)) = x). The IND-CPA game for Enc is as follows:
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1. A challenger picks a private key uniformly among all such keys for Enc, generates the
corresponding public key and sends it to the adversary.

2. The adversary chooses two messages m0, m1 of equal length from the domain of Enc
and sends them to the challenger.

3. The challenger picks b� {0, 1} and sends Enc(mb) to the adversary.

4. The adversary returns b̂ ∈ {0, 1} and wins iff. b̂ = b.

Let p be the winning probability of the adversary in the IND-CPA game (computed over all
the samplings in the game, plus the ones possibly made by Enc and the adversary itself);
the IND-CPA advantage of the adversary is defined to be |2p− 1|. Finally, the IND-CPA
advantage AdvIND-CPA

Enc (t) of Enc is the maximum IND-CPA advantage of any adversary
attacking Enc that runs in time t.∗

Exercise 1: A game of martens and squirrels

The cute and clever pine marten (martes martes) is out in the woods hunting for the dim
and pouchy grey squirrel (sciurus carolinensis). From a previous scouting mission, the
marten knows that the squirrel sleeps every night in a different place, and it has carefully
mapped all N such places. It also knows that the squirrel never sleeps twice in the same
place until it has visited all the other N − 1 ones. The squirrel, aware of the presence of
the marten, tries to always change the order in which it visits its sleeping grounds from
one cycle to the other.

Q.1: The marten can visit T places per night to try catching the squirrel. Specify a
simple hunting strategy for the marten that guarantees that it will catch the squirrel in at
most N − T nights.

Q.2: The marten being quite slender, it cannot reasonably expect to survive for N − T
nights (for typical values of N and T ) without catching a squirrel. It is however highly
skilled in scouting and astronomy, and so is always able to determine where the squirrel
slept the one previous night and what is the day position in the current cycle (from 1
to N). Additionally, the squirrel —being quite silly— only uses a very primitive way of
determining its sleeping schedule: at the start of every cycle, it picks k � J0, N − 1K
uniformly at random, and then decides that it will spend the ith night of the cycle at place
i+k mod N (where a mod b denotes here the unique non-negative remainder ∈ J0, b− 1K
of the division of a by b), for some fixed numbering of the sleeping places (i.e. one that
does not change from one cycle to another).

1. Assuming that the marten already knows the numbering of sleeping places used by
the squirrel, give a strategy that guarantees that it will catch the squirrel within at
most two nights.

2. Show that the former assumption is not necessary if the marten can spend one full
cycle observing the squirrel (for instance because it is catching other squirrels in the
meantime).

∗Note that in a public-key setting, an adversary may (thanks to the knowledge of the public key) always
itself encrypt messages of its choice without making any query to the challenger.
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Q.3:

1. Show that the squirrel’s strategy may be understood to implicitly use a block cipher,
and give a general formulation thereof using an abstract “format-preserving” block
cipher E : K × J0, N − 1K→ J0, N − 1K.

2. Show informally (e.g. using a reduction argument) that for this strategy, the marten’s
advantage in catching the squirrel is (among other things) a function of the PRP
security of the squirrel’s chosen block cipher.

Figure 1: Credit: wikimedia commons.

Exercise 2: Concatenation combiner

We define the hash function concatenation combiner CAT(F ,G)† as the map x 7→ F (x)||G(x).
In other words, given two hash functions F and G , CAT(F ,G) is the function that on input
x gives as output the concatenation of F (x) and G(x).

Q.1: Let H 1 : {0, 1}? → {0, 1}n, H 2 : {0, 1}? → {0, 1}n be two independent ideal hash
functions, in that ∀x ∈ {0, 1}?,H 1(x) � {0, 1}n,H 2(x) � {0, 1}n (with all the drawings
being independent). Show that CAT(H 1,H 2) is ideal (in the same sense).

Q.2: Let now H 1 be a “narrow-pipe” Merkle-Damg̊ard hash function instantiated with
an ideal compression function.

1. Recall the average complexity of computing a collision for H 2.

2. Recall an upper-bound on the average complexity of computing an N -multicollision
for H 1.

‡

3. Give a collision attack for CAT(H 1,H 2) with time cost Θ(n2n/2), and give its memory
cost. (Hint: a step of the attack consists in computing an N -multicollision for H 1

for a well-chosen N).

4. Is CAT(H 1,H 2) still an ideal hash function?

†The horrendous signature of CAT is ({0, 1}? → {0, 1}n)×({0, 1}? → {0, 1}n
′
)→ ({0, 1}? → {0, 1}n+n′

).
‡Recall that an N -multicollision for a hash function H is an N -uple m1, . . . ,mN s.t. H (m1) = · · · =

H (mN ).
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Q.3: Despite the previous attack, what do you think could be the interest (from a prac-
tical/engineering point of view) of using CAT(H 1,H 2) where H 1 and H 2 are narrow-pipe
Merkle-Damg̊ard.

Exercise 3: MACs and tags

In all of the following (independent) questions, we consider a deterministic MAC M :
{0, 1}κ × {0, 1}∗ → {0, 1}n, that is assumed to be “good”.

Q.1: Suppose that n = 128, and let t = tL||tR denote the output of M , where tL (resp.
tR) are the 64 highest (resp. lowest) bits of t. We then consider the map EXT : {0, 1}128 →
{0, 1}192, tL||tR 7→ ((tL � 1) ⊕ tR)||((tL � 63) ⊕ tR)||((tL ≫ 3) ⊕ (tR ≪ 7)), where �,
�, ≪, ≫, ⊕ respectively denote bitshift to the left, bitshift to the right, circular bitshift
(or rotation) to the left, circular bit shift to the right and bitwise XOR.

1. Show that EXT is invertible.

2. What is the size of the proper image of EXT (that is the size of the set {x ∈
{0, 1}192 | ∃ y ∈ {0, 1}128,EXT(y) = x})?

3. Is there a cryptographic interest in defining M ′ from M as M ′(x) = EXT(M (x))?

4. Same question, if EXT were made “suitably non-invertible”?

Q.2: A certain network protocol authenticates every packet of 384 bits using M with
n = 96. For every session of the protocol (what is a session is not important here, but in a
typical day one expects 240 sessions to be created worldwide), an identifier that is expected
to uniquely identify the session among all possible sessions (past and future) is taken to be
the 96-bit tag of a designated packet that is part of the session.

1. Explain why this overall process is badly-designed.

2. Propose a way to improve it.

Q.3: Suppose that M is a “good MAC” and is used in a challenge-response protocol (e.g.
to grant access to a certain place or to authorise the usage of an object). For each of the
following key/tag sizes (i.e. values for κ and n), describe one scenario where it would be
an appropriate choice, or explain why there is none in your opinion.

1. κ = 64, n = 64.

2. κ = 128, n = 64.

3. κ = 64, n = 128.

4. κ = 256, n = 256.

Exercise 4: Textbook PKC

In the following questions, G is a finite commutative cyclic group of prime order p (meaning
that it contains p elements), and g is a publicly-known generator of G. You may assume
that basic arithmetic in G (computing a product, an exponentiation and an inversion) is
“efficient”.

You must carefully justify all your answers in this exercise, however no formal proofs
are expected.
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Q.1: We define the decisional Diffie-Hellman problem (DDH) as follows: an adversary
is given one of the two triples (ga, gb, gab), with a, b � J0, p − 1K or (ga, gb, gc), with
a, b, c � J0, p − 1K, each with probability 0.5. The adversary wins if it correctly guesses
which triple it was given.

1. Show that an adversary can win the DDH game with probability close to one by
computing a small number of discrete logarithms (you don’t need to precisely compute
the probability).

2. Is DDH a “hard” problem for the group G if p ≈ 2128?

We now define the classic textbook Elgamal public encryption scheme as follows: a
receiver picks a private key a � J0, p − 1K, computes k = ga and publishes k as a public
key. A sender wishing to send a message m ∈ G to the receiver picks b � J0, p − 1K and
sends (gb,mkb) to the receiver.

Q.2:

1. Explain how the receiver can decrypt a message sent by the sender.

2. Show informally that if DDH is “not hard” in G, then there is an “efficient” adversary
that can attack this encryption scheme with respect to the IND-CPA security notion.

3. Is the following scenario possible: 1) computing discrete logarithms in G is “hard”;
2) classic textbook Elgamal with the group G is “not IND-CPA”?

Q.3: Assuming that one wishes for the above scheme to reach the best possible IND-CPA
security, explain why it is important that the sender picks b uniformly (and independently
for every message).

Q.4: As an attacker, you are recording all the messages that are being sent (by possibly
several senders) to a given receiver.

1. Suppose that the same value for b is used for two different messages. Explain what
information you could deduce as a result.

2. Explain why textbook Elgamal cannot informally be said to be “beyond-birthday
secure”.

3. Given what you know about the hardness of computing discrete logarithms in a finite
commutative cyclic group, is the previous attack a limiting factor for the security of
textbook Elgamal?

Q.5: Suppose you wish to secretly communicate with someone over the internet, and
want to rely on textbook Elgamal (with well-chosen parameters). Would this encryption
scheme alone provide adequate security, or would some additional cryptographic primitives
or constructions be needed?
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