
TLS 2022–04–12 1/29

Introduction to cryptology (GBIN8U16)
]

A few things about TLS

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

2022–04–12

pierre.karpman@univ-grenoble-alpes.fr
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html


TLS 2022–04–12 2/29

Back to the start: set up a secure channel

A client C wants to securely communicate with a server S :
▸ S should prove to C that it is the right server

▸ Using a public-key digital signature (e.g. DSA)

▸ C and S should exchange a shared secret
▸ Using asymmetric key exchange (e.g. DH)

▸ C and S may use a shared secret to communicate
▸ Using an authenticated symmetric encryption scheme (e.g.

AES-CBC + HMAC-SHA-256)



TLS 2022–04–12 3/29

In the Web ↝ TLS

TLS: Transport Security Layer

▸ Former SSL (Secure Socket Layer): 95-99

▸ Latest version: 1.3 since 2018
▸ Quite a complex protocol

▸ Mixes crypto, networking, implementation aspects
▸ Cf. e.g. the RFCs; Wikipedia’s article



TLS 2022–04–12 4/29

TLS in a small nutshell

TLS uses:
▸ A handshake protocol

▸ To set up the shared secret

▸ A record protocol
▸ To further exchange data

It also relies on a certification authority (CA)

▸ To help trusting the servers, if one needs that



TLS 2022–04–12 5/29

A brief handshake

Goal of the handshake:

▸ (Perform the key exchange; possibly prove S ’s identity;
possibly (rarely) prove C ’s identity)

▸ Negotiate the protocol’s version

▸ Negotiate the algorithms to be (later) used



TLS 2022–04–12 6/29

In a borrowed picture

Figure: A mutually-authenticated DHE handshake, from (Bhargavan &
Leurent, 2016)



TLS 2022–04–12 7/29

Some comments

▸ The server’s key exchange parameters are signed
▸ Shows that it knows its secret key
▸ Prevents tampering

▸ The exchange is concluded by two-ways encrypted MACs of
the transcript
▸ Allows to check that all secrets are indeed shared

▸ tls-unique may be used to uniquely (err... not really)
identify the exchange
▸ May be used later at the application level



TLS 2022–04–12 8/29

What about certificates now?

X.509 Certificates: ≈ signed public keys; specify among others:

▸ A serial number

▸ The algorithm used to sign the certificate
▸ Identities

▸ Of the issuer (e.g. Let’s Encrypt, typically a Certification
Authority)

▸ Of the subject (e.g. secure.iacr.org)

▸ Validity dates

▸ The subject’s public key (for a specified algorithm)

▸ Whether the subject is a Certification Authority



TLS 2022–04–12 9/29

Certification Authorities

CAs:

▸ Are trusted (by your browser)
▸ Authenticate third parties

1 Establish that a user S is who it claims to be
2 Establish that it knows a public/secret key pair
3 Agree to sign a certificate with these information

▸ A client trusting the CA may now trust S ’s certificate

▸ May delegate trust to third parties
▸ Leading to certification chains: “Root” CA → (Intermediary

CA)∗ → End subject
▸ (A CA may (not) be restricted in the length of chains it can

issue)

▸ (If a CA is malicious/compromised, then things can turn bad)



TLS 2022–04–12 10/29

Who signs what

Depending on the context, certificates may e.g.:
▸ Altogether not be signed by a CA

▸ Instead being self-signed: prevents tampering in e.g. TLS
handshakes; one has to already trust the issuer

▸ Only for a small-scale context; quite brittle

▸ Signed by a free CA
▸ E.g. https://letsencrypt.org/. Quite recent; nice!

▸ Signed by a commercial/organisational CA (e.g.
DigiCert/TERENA)

https://letsencrypt.org/


TLS 2022–04–12 11/29

Finer-grain management: certificate “pinning”

An issue with the CA approach:
▸ There are many CAs

▸ 100+ Root CAs, that can further delegate

▸ CAs could issue fake certificates
▸ If compromised; if acting maliciously
▸ Happened in practice (e.g. DigiNotar in 2011)

A remediation strategy: certificate/public key pinning:

▸ Services/websites declare (e.g. to a browser developper)
which specific CA issued their certificate

▸ Upon connection, valid certificates from other CAs are
rejected

▸ (But hard to deploy for everyone; scalability issues; browsers
(say) need to be trusted?)



TLS 2022–04–12 12/29

Alternative approach: certificate transparency

Cf. https://www.certificate-transparency.org: create a
giant trusted log of certificates

▸ CAs, users may submit certificates to an append-only log

▸ Publicly record misuse/attacks

▸ Double-check the authenticity of a (doubtful) certificate

▸ (Kind of a heavy mechanism?)

↝ Key distribution is a really hard problem!

https://www.certificate-transparency.org


TLS 2022–04–12 13/29

What about attacks now?



TLS 2022–04–12 14/29

TLS attacks

TLS is:

▸ Widely used; useful

▸ Pretty complex

▸ Mixes many cryptographic algorithms

▸ Makes people feel safe

⇒ A very good real-world attack target

▸ Implementation-based (not crypto)

▸ Crypto-based (crypto)

▸ A selective overview of both kind:
https://mitls.org/pages/attacks

https://mitls.org/pages/attacks


TLS 2022–04–12 15/29

Three quick case studies

Let’s have an overview of attacks on:

▸ The CA infrastructure

▸ The handshake protocol

▸ The record protocol



TLS 2022–04–12 16/29

Quick case study 1: Fake CA thru MD5 collisions

MD5 quick facts:

▸ A 128-bit hash function from ’92 (Rivest)

▸ Serious weaknesses found in ’93 (den Boer & Bosselaers)

▸ Very efficient practical collision attacks in ’05 (Wang & Yu)

▸ Efficient practical chosen-prefix collisions in ’07 (Stevens &
al.)

▸ Still pretty popular after that... ← Cryptographers are very
bad at communication



TLS 2022–04–12 17/29

Identical v. Chosen-prefix collisions

▸ An identical-prefix collision for a hash function is a collision of
the form m = p∣∣c ∣∣s, m′ = p∣∣c ′∣∣s
▸ p, s may be chosen; c , c ′ are given by the attack

▸ A chosen-prefix collision is of the form m = p∣∣c ∣∣s,
m′ = p′∣∣c ′∣∣s
▸ p, p′, s may be chosen; c , c ′ are given by the attack

▸ A generic attack is chosen-prefix by default

▸ Cryptographic attacks (w/ cost < 2n/2, n the hash size) tend
to be easier if identical-prefix



TLS 2022–04–12 18/29

Chosen-prefix collision and fake CAs

▸ A once popular signing algorithm for certificates: RSA-MD5
▸ Attack strategy: Ask a CA to sign an innocent-looking

certificate cert
▸ Prepare a colliding certificate cert’
▸ The CA “also signed” cert’

▸ How’s that useful?
▸ No CA in their right mind would let a λ user become an

intermediary CA
▸ So make cert’ be an intermediate CA certificate and wreak

havoc on the internet
▸ (Should now be detected/prevented through pinning, CT)



TLS 2022–04–12 19/29

“Rogue CAs”

Exploiting hash collisions to create fake CAs works in practice
(Stevens & al., 2009)

▸ Used a fast(er) chosen-prefix collision attack for MD5

▸ Fully done in the wild

▸ Further exploited predictability of certificates’ serial numbers

▸ (Maybe using MD5 is not such a great idea?)



TLS 2022–04–12 20/29

Colliding certificates structures

Figure: From Stevens & al. (2009)



TLS 2022–04–12 21/29

(MD5 CP collisions beyond TLS)

The strategy can be applied to other signing settings; it was also
used to propagate the FLAME malware

▸ Detected in 2012, active since 2007?
▸ (Most likely) targeted the Iranian nuclear program

▸ Passed as a malicious “Windows update”

▸ With a valid signature, obtained through a collision



TLS 2022–04–12 22/29

Quick case study 2: “Logjam” weak DH attack

▸ Some of the algorithms that may be used w/ TLS are weak
▸ E.g. the “export” suite from the 90’s
▸ Include 512-bit groups for Diffie-Hellman (over finite fields)
▸ For which a dlog can be computed within minutes (after two

weeks of precomputation)
▸ (And also symmetric encryption w/ 40-bit keys)

▸ These are open for negotiation during a TLS handshake

▸ Well-configured client do not ask for weak crypto
▸ But some servers may offer it

▸ Weak crypto is better than no crypto?



TLS 2022–04–12 23/29

An active attack strategy

Objective: impersonate the server to the client

▸ Intercept a client’s message to the server, tamper it to ask for
weak DH parameters, forward to the server

▸ Intercept the server’s answer, tamper it to hide the bogus
weak request, forward to the client

▸ Forward the server’s DH parameters to the client

▸ Compute the dlog of the server’s group element; derive the
shared secret; authenticate the bogus transcript



TLS 2022–04–12 24/29

Logjam etc.

This attack (and variants) have been implemented in practice
(Bhargavan & al., 2015). It jointly exploited (among others) that
(at the time):

▸ Some servers still implement weak crypto

▸ Some clients fail to reject weak DH groups (unlike e.g. weak
block ciphers)

▸ Individual “export-grade” discrete logarithms can be
computed quite fast

▸ Some clients are fine with waiting for that much time



TLS 2022–04–12 25/29

Quick case study 3: The “BEAST” scenario

Some “theoretical” attacks on some encryption schemes are
well-known:

▸ On weak ciphers†

▸ E.g. RC4

▸ On bad implementations/strategies∗
▸ E.g. bad MAC-then-Encrypt checks

▸ On improper usage†

▸ E.g. encrypting too much w/o changing the key



TLS 2022–04–12 26/29

Theoretical v. Practical

But these (†) attacks may have strong requirements, e.g.:
▸ Large data volume

▸ E.g. ≈ 232 blocks

▸ Partial knowledge of the messages
▸ ≈ Known-plaintext attacks

With “weak” results, e.g.:

▸ Do not result in key recovery
▸ Only allow to learn limited information

▸ E.g. the XOR of two messages

So are these really a threat?



TLS 2022–04–12 27/29

The target: Authentication Cookies

Cookies:

▸ Long-term data associated with an HTTP service, stored by a
client’s browser

Authentication Cookies:

▸ Cookies storing information that identifies/authenticates a
user

▸ Useful to log in “automatically” on a web account

▸ Can be exported to other browsers

▸ Perfect target for a partial-plaintext-recovery attack!



TLS 2022–04–12 28/29

A Cookie-harvesting strategy

An attacker (†-type) is happy if able to:

▸ Capture the network traffic of the target user

▸ Trigger many encryptions of the same target cookie

▸ (Potentially) know partial information about the data
surrounding the cookie

The last two points are enabled by Duong & Rizzo (2011):

▸ Tricking the target user into visiting a malicious webpage
▸ Having the page request (e.g. using Javascript code) many

connections to the cookie-using URL
▸ Will (hopefully) be encrypted with a defective mechanism
▸ Will attach the cookie as part of the query



TLS 2022–04–12 29/29

Some Cookie-retrieval settings

RC4 biases (AlFardan & al., 2013):

▸ RC4 is a weak stream cipher with many keystream biases
▸ Lends itself well to broadcast attacks

▸ Encrypt an unknown plaintext many times with different keys
▸ Given the biases, guess its most probable value

▸ So just broadcast a cookie

64-bit block ciphers, e.g. (Bhargavan & Leurent, 2016):

▸ Use the generic collision attack on CBC encryption
▸ Require some known information in the plaintext

▸ But network protocols typically provide that

▸ Find & exploit collisions between known data and unknwon
cookie


