
Dlog PKC 2022–03 1/32

Introduction to cryptology (GBIN8U16)
]

Public-Key Cryptography: Discrete
logarithm-based schemes

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

2022–03

pierre.karpman@univ-grenoble-alpes.fr
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

Dlog PKC 2022–03 2/32

How to get a key

So far we assumed the presence of a shared secret between
participants, but how do you get there?

Some possibilities
I Meet in person (impractical)
I Use secure message transmission (not so practical, hard to

evaluate assumptions? But very nice!)
I Use asymmetric “public-key” schemes (quite practical)f our

focus now!

Dlog PKC 2022–03 3/32

Public-key algorithms

Some major examples:
I Asymmetric encryption (one key to encrypt, another to

decrypt), e.g. RSA (+ some randomized padding)
I Digital signature (one key to sign, another to verify), e.g. DSA
I Public-key key exchange, e.g. Diffie-Hellman

Note: RSA can be used to implement both a key-exchange and a
signature

Dlog PKC 2022–03 4/32

Group definitions

Finite cyclic group (multiplicative notation)

A finite group G of order (or cardinality) N is cyclic if ∃ g ∈ G s.t.
∀ x ∈ G, ∃ i ∈ ~0,N − 1� s.t. x = gi . Such an element g is called a
generator (or primitive element) of the group.

Properties

I Any element h of G generates a subgroup H := 〈h〉. The
order ord(h) of h is defined as the order (or cardinality) of H. If
H = G, h is a generator of the full group G.

I A group may have several generators.
I (Lagrange Theorem) If H is a subgroup of G, #H |#G

(Corollary: if #G is prime, all elements except 1 are primitive)

Dlog PKC 2022–03 5/32

Group examples

An additive group:
I (Z/512Z,+), g = 1, ord(g) = 512

Any multiplicative group of a finite field (and more):
I F×257, g = 3, ord(g) = 256
I (F2[X]/〈X8 + X4 + X3 + X2 + 1〉)×, g = X , ord(g) = 255
I (Z/nZ)×, of order ϕ(n) (= n − 1 when n is prime)
I Cf. the extended Euclid algorithm... later!

Dlog PKC 2022–03 6/32

Today’s focus: Diffie-Hellman

A simple protocol:
I Let G = 〈g〉 be a cyclic finite group with a generator g
I A picks a � ~0, ord(g) − 1�, sends ga to B
I B picks b � ~0, ord(g) − 1�, sends gb to A
I A computes (gb)a = gba = gab , sets k = KDF(gab)

I B computes (ga)b = gab , sets k = KDF(gab)

With KDF some key derivation function (e.g. a ∼ hash function)

Dlog PKC 2022–03 7/32

Why this works?

Functionality
I A and B only need public information to perform the exchange
I They get the same k

⇒ Public-key key exchange

Security: necessary conditions
I Given g, ga , gb , it must be hard to compute gab

I k = KDF(gab) must be “random-looking” when a, b are
random

I (Related: there must be many possible values for k)

Dlog PKC 2022–03 8/32

Security focus

A necessary condition: computing discrete logarithms in G must
be “hard”

Discrete logarithm

Let G = 〈g〉 be a finite group of order N, the discrete logarithm in
base g of h = ga , a ∈ ~0,N − 1� is defined as a

How hard is the “discrete logarithm problem” (DLP) for various
groups?

Dlog PKC 2022–03 9/32

DLP hardness

Proposition

It is always possible to compute the discrete logarithm in a group of
order N in time O(

√
N)

So one must at least pick N s.t. 2log(N)/2 is large. But:

I (Z/nZ,+): DLP always easy (logarithm ≡ division)
I F×q : usually hard, not maximally hard (needs much less work

than
√

N)
I E(Fq): usually maximally hard (needs about

√
N)

Dlog PKC 2022–03 10/32

A simple generic algorithm

Idea: use collisions to reveal the solution. One way to do this:
baby-step/giant-step
I Let G be of order N, h = ga for some a ∈ ~0,N − 1�
I Let r = d

√
Ne, then a = ra1 − a0, with a0, a1 less than r

I We have h = gra1−a0 , so hga0 = gra1

⇒

1 Compute L0 = [hgx , x < r], L1 = [gry , y < r]

2 Find i, j s.t. L0[i] = L1[j]

3 Return a = rj − i

Dlog PKC 2022–03 11/32

Baby-step/giant-step: Comments

I The baby-step/giant-step algorithm works with any group
I It has time and memory cost equal to

√
ord(G)⇒ generically

optimal (up to the memory cost)!
I It can easily be parallelised
I It can easily be adapted when the logarithm is known to lie in

a “small” interval
I Other collision-based algorithms exist with constant or small

memory cost (such as Pollard’s ρ (also parallelisable) or
kangaroos)!

I Depending on G, better algorithms may be available (we’ve
seen some examples)

Dlog PKC 2022–03 12/32

More on how to pick a group

If the order N of G is not prime, G has subgroups

I Let N = pN′, then gp generates a group of order N′

Proposition (Pohlig-Hellman)

It is possible to solve the DLP in G subgroup-by-subgroup

⇒ For the DLP to be hard, G must be of order N s.t. DLP is hard in
a subgroup of order p, the largest prime factor of N (Idea: use a
Chinese Remainder Theorem-like decomposition; no details)

Dlog PKC 2022–03 13/32

Are we done? Not quite

I Hardness of the DLP cannot be “proven”, but a reasonable
assumption for some groups

I We may also sometime need gx to be “random-looking” (ditto)

But regardless, Diffie-Hellman as presented only protects againts
passive adversaries

⇒ Not very useful in practice

Dlog PKC 2022–03 14/32

Diffie-Hellman with a man in the middle

I A sends ga to B
I C intercepts the message, sends gc to B

I B sends gb to A
I C intercepts the message, sends gc to A

I A and C share a key ka = KDF(gac)

I B and C share a key kb = KDF(gbc)

I Anytime A sends a message to B with key ka , C decrypts and
re-encrypts with kb (and vice-versa)

Dlog PKC 2022–03 15/32

One way to solve this: signatures

A wants to be sure it is talking to B
I Find B ’s public verification key for a signature algorithm
I Ask B to sign gb

I Only accept it if the signature is valid

Works well, but A needs to know B’s public key beforehand

⇒We again have a bootstrapping issue

So are we back to square one?

Dlog PKC 2022–03 16/32

Public-key infrastructures can help

Public keys still help compared to private ones:
I Possibly long term (v. have to be changed after a while

(although not a real limitation))
I Scales linearly w/ the number of participants (v. quadratically)
I Trusting only one key is enough, if it signs all the ones you

need!

Dlog PKC 2022–03 17/32

Example: TLS certificates

The simple picture:
I Web browsers are pre-loaded with “certificates” (∼ public

keys) of certification authorities (CAs)
I CAs sign the certificates of websites using secure

connections (possibly using intermediaries)
I When connecting to a website, check the entire chain of

certificates
I If everything’s fine, use the website’s public key to

authenticate the exchange

Dlog PKC 2022–03 18/32

So how do we sign?

Signature possibilities
I Use a discrete logarithm based protocol
I Or RSA
I But in both cases, also need a hash function!

Dlog PKC 2022–03 19/32

Signatures: what?

Objectives of a signature algorithm:
I Given (sk, pk) a key pair
I message m + secret key sk{ signature s = Ssk(m)

I message m + signature s + public key pk{ verified message
Vpk(m, s)

Informal security objectives
I Given pk, it should be hard to find sk
I Given pk, it should be hard to forge signatures
I (Variant: given access to a signing oracle O(sk,pk), it should be

hard to forge signatures)
I Formalised as Existential unforgeability under

chosen-message attacks (EUF-CMA)

Dlog PKC 2022–03 20/32

EUF-CMA for Public-Key signatures

EUF-CMA for (S,V): An adversary cannot forge a valid signature
σ for a message m such that V(pkC , σ,m) succeeds, when given
(restricted) oracle access to S(skC , ·):

1 The Challenger chooses a pair (pkC , skC) and sends pkC to
the Adversary

2 The Adversary may repeatedly submit queries mi to the
Challenger

3 The Challenger answers a query with σi = S(skC ,mi)

4 The Adversary tries to forge a signature σf for a message
mf ,i mi , s.t. V(pkC , σf ,mf) = >

Dlog PKC 2022–03 21/32

Related: interactive proof of identity

Objective of a proof of ID scheme:
I Publish public identification data α
I When challenged, prove knowledge of a secret related to α

Example of a one-time scheme:

1 Let H be a preimage-resistant hash function, R a large set

2 The prover draws x � R, computes and publishes X = H(x)

3 When challenged, reveals x

Many-time variant:

1 Draw x � R, compute and publish X = HN(x)

2 When challenged, reveal HN−1(x), reset X = HN−1(x)

This can be generalised even more, leading eventually to
hash-based signatures (no details)

Dlog PKC 2022–03 22/32

A discrete-log based PoID scheme

1 Let G = 〈g〉 be a group with a hard DLP

2 The prover draws x � R, computes and publishes X = gx

3 When challenged; draws r , sends R = gr

4 The verifier picks c and sends it

5 The prover computes a = r + cx and sends it

6 The verifier checks that RXc = ga

This can be run many times, BUT r ’s should be uniformly random
and never repeat!

Dlog PKC 2022–03 23/32

From PoID to signature

Differences between PoID and signatures:
I PoIDs are interactive (in the verification), signatures are not
I Signatures also involve a message

One major observation:
I If the prover can guarantee that it doesn’t control both R and

c, interaction is unnecessary
I Otherwise, nothing is provedf This is actually nice, since it

allows to show that the protocol is zero-knowledge (cf. TD)

⇒ Fiat-Shamir transformation: generate c from R with a hash
function

Dlog PKC 2022–03 24/32

Schnorr signatures

To sign a message m with the key pair (sk, pk) (x,X = gx)

1 Pick r � R and compute R = gr

2 Compute c = H(R ,m)

3 Compute a = r + cx and output (c, a) as the signature of m

To verify a signature:

1 Compute R̂ = ga/Xc = ga/gcx

2 Check that c = H(R̂ ,m)

Important: r must (again) be uniformly random and not repeat!
(Why?)

Dlog PKC 2022–03 25/32

Remember randomness (always)!

Figure: Not good for Schnorr signatures

Dlog PKC 2022–03 26/32

Where are we with dlog?

If G = 〈g〉 is a prime-order group where the DLP is hard (on
average ≡ in the worst case), then:
I Can do asymmetric key exchange
I Can do public-key signatures

For signatures we also need
I Good hash functions
I Good pseudorandom number generation (for “classical”

signature algorithms)

Dlog PKC 2022–03 27/32

What if I don’t trust my PRNG?

I Typical dlog-based signatures break easily if r is not random
enough
I Vulnerable to bad implementations or government backdoors

I But one can tweak them to generate r from the message and
the private key using a VIL/VOL-PRF (either completely
deterministically or not)
I Example: RFC6979

I N.B. It is indeed fine for a signature algorithm to be
deterministic (cf. also later RSA examples)

I ... But in the case of dlog-based schemes, determinism may
help physical attacks

Dlog PKC 2022–03 28/32

Some comments on dlog attacks

When G ≈ F×p , the current dlog records are:
I |p| ≈ 795 bits (Boudot et al., 2019), using a Number Field

Sieve (NFS) algorithm
I Took about 3100 core years

I |p| ≈ 1024 bits for a trapdoored prime (Fried et al., 2017),
using a Special NFS (SNFS) algorithm
I Took about 385 core years

Note: it may be hard to decide if a prime is trapdoored

One nice (for an attacker) feature of (S)NFS:
I The largest part of the cost is a precomputation, then

computing individual dlogs is very fast

Dlog PKC 2022–03 29/32

Some more comments on dlog: small subgroup attack

Consider a semi-static key exchange,
I Where one of ga or gb (say gb) is fixed

using 〈g〉 ⊂ F×p where F×p has many small subgroups
I Then B must check that “ĝ” sent by A is in the correct group
I Otherwise, if ĝb is in a small group of order N, a malicious A

can learn b mod N
I . . . Then b mod N′, etc.

One way to easily prevent this: use a “safe” prime p = 2q + 1, q
prime
⇒ Only a small subgroup of order 2 to check for in F×p

Dlog PKC 2022–03 30/32

What about implementation, though?

I We need to compute gx , for a large x (e.g. 256 bits)
I Cannot just do g × g × g × . . . × g ≈ 2256 times!
I Notice that g × g = g2, g2 × g2 = g4, g4 × g4 = g16, etc.
I Also: g × g2 = g3, g2 × g16 = g18, etc.

{ “Square & multiply” algorithm

Dlog PKC 2022–03 31/32

Square & multiply

Square & multiply

Input x, g
Output gx

1 h = 1

2 While x , 0

3 if (x&1)

4 h ←[h × g

5 g ← [g × g

6 x ←[x � 1

7 Return h

⇒ Only log(x) iterations needed!
(Problem here, runtime also depends on wt(x))

Dlog PKC 2022–03 32/32

Implementation: what else?

I We also need multiplication, addition in G
I If G ⊆ F×p ⇒ modular arithmetic
I Require big number multiplication, (integer) division,

remainders, addition
I ⇒ split f as e.g. f0 + 264f1 + 2128f2 + . . .

I Can use dedicated arithmetic for “efficient” primes (e.g.
efficient Barrett reduction)

