
Introduction 2022–02–02 1/27

Introduction to cryptology (GBIN8U16)
]

Introduction

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

2022–02–02

pierre.karpman@univ-grenoble-alpes.fr
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

Introduction 2022–02–02 2/27

First things first

Main goals of this course:

I Motivate the field (why is cryptography useful?)

I Introduce some constructions (what’s a block cipher, a key
exchange?...)

I Introduce some attacks (how do you find collisions for a
random function?...)

I Introduce some real-life usage (e.g. TLS)

Introduction 2022–02–02 3/27

Schedule

Previous slide in order:
I Definitions and basic security notions for:
I Block ciphers, symmetric encryption, MACs, hash functions
I Discrete log-based key exchange & signatures, maybe RSA

(incl. paddings)

I A few examples of generic attacks

I A few concrete use-cases/applications/attacks

Introduction 2022–02–02 4/27

Organisation

There will be:

I Lectures (such as this one)

I Tutorial sessions (mostly)

I Practical/lab sessions (occasionally)

I A contrôle continu evaluation (a small programming project)

I A final exam

Introduction 2022–02–02 5/27

What’s crypto?

Quick answer: it’s about protecting secret data from adversaries

I In a communication (encrypted email, text messages; on the
web; when paying by credit card)

I On a device (encrypted hard-drive)

I During a computation (online voting)

I Etc.

Introduction 2022–02–02 6/27

Where does crypto run?

Crypto on various platforms

I High-end CPUs (Server/Desktop/Laptop computers,...)

I Mobile processors (Phones,...)

I Microcontrollers (Smartcards,...)

I Dedicated hardware (accelerating coprocessors, cheap
chips,...)

Introduction 2022–02–02 7/27

Techno constraints

Varying contexts, varying requirements

I Speed (throughput)

I Speed (latency)

I Code/circuit size

I Energy/power consumption

I Protection v. physical attacks

⇒ Implementation plays a big part in crypto

Introduction 2022–02–02 8/27

Quick example

A protocol (e.g. TLS) uses among others

I A key exchange algorithm (e.g. Diffie-Hellman)
— “public-key” cryptography

I instantiated with a secure group (e.g. ANSSI FRP256V1)

I An AEAD scheme
— “symmetric-key” cryptography

I usually a mode of operation instantiated with a secure block
cipher (e.g. the AES)

I A digital signature algorithm (e.g. ECDSA)
— “public-key” + “symmetric-key” cryptography

I instantiated with a secure group and a secure hash function
(e.g. SHA-3)

Introduction 2022–02–02 9/27

Protocols can be complex

ClientHello

ServerHello(v, kx, rid)

(full handshake)
kx = PSK|RSA PSK|DHE PSK|SRP|SRP RSA

ServerCertificate

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ClientCCS

ClientFinished

ServerNewSessionTicket

ServerCCS

ServerFinished

ApplicationData∗

ntick = 1

kx = SRP RSA
∥ chint = 1

kx = RSA PSK|SRP RSA

(full handshake)
kx = DH|DH anon|ECDH|ECDH anon

ServerCertificate

ServerKeyExchange

(authenticate client?)

CertificateRequest

ServerHelloDone

ClientCertificate(coffer)

ClientKeyExchange

ClientCertificateVerify

ClientCCS

ClientFinished

ServerNewSessionTicket

ServerCCS

ServerFinished

ApplicationData∗

ntick = 1

cask = 1 &
coffer = 1

coffer = 1

cask = 1

cask = 1 &
kx = DH|ECDH

(full handshake)
kx = RSA|DHE|ECDHE|RSA EXPORT|DHE EXPORT

ServerCertificate

ServerKeyExchange

(authenticate client?)

CertificateRequest

ServerHelloDone

ClientCertificate(coffer)

ClientKeyExchange

ClientCertificateVerify

ClientCCS

ClientFinished

ServerNewSessionTicket

ServerCCS

ServerFinished

ApplicationData∗

ntick = 1

cask = 1 &
coffer = 1

cask = 1

cask = 1

kx = DHE|ECDHE|
RSA EXPORT|DHE EXPORT

(abbreviated handshake)

ServerNewSessionTicket

ServerCCS

ServerFinished

ClientCCS

ClientFinished

ApplicationData∗

ntick = 1

rid = 1∥rtick = 1

rid = 0 & rtick = 0

rid = 0 & rtick = 0

ntick = 0

kx = RSA

cask = 0

cask = 0

cask = 0 ∥
coffer = 0

ntick = 0

kx = DH anon|
ECDH anon

kx = DH|
ECDH

coffer = 2

cask = 0 ∥
kx = DH anon|

ECDH anon

cask = 0

cask = 0 ∥
coffer = 0

ntick = 0

kx= SRP|DHE PSK
∥(kx = PSK &

chint = 1)
kx = PSK
& chint = 0kx = RSA PSK

& chint = 0

ntick = 0

Fig.9.
M

essage
sequences

for
the

ciphersuites
com

m
only

enabled
in

O
penSSL

5
5
2

5
5
2

Figure: Part of the TLS state machine, Beurdouche et al., 2015

Introduction 2022–02–02 10/27

“Doing crypto”

I Designing new primitives/constructions(/protocols)

I Analysing existing primitives/...

I Deploying crypto in products

I Different goals, different techniques
I Ad-hoc analysis, discrete mathematics, algorithmics
I Computational number theory/algebraic geometry
I Low-level implementation (assembly, hardware)
I Formal methods
I Following “good practice”

Introduction 2022–02–02 11/27

Scope of an analysis

Many types of adversary

I Passive (“eavesdropper = Eve”)

I Not passive, i.e. active
I With or w/o physical access
I Side channels
I Fault attacks

I With varying scenarios (“one-time” or long-term secret?)

I With varying objectives

Introduction 2022–02–02 12/27

Security objectives?

Introduction 2022–02–02 12/27

Security objectives?

I Hard to find the “keys”

I Hard to find the message (confidentiality)

I Hard to change/forge a message (integrity/authenticity)

I Etc.

Remark

Most of the time, one aims for some form of computational
security: it is always possible to break everything by spending
“enough” time just make sure that “enough” is “too much”.

Introduction 2022–02–02 13/27

A broader perspective

In crypto (as in science in general), we need:

Figure: Nebular’s wisdom (Watterson)

Introduction 2022–02–02 14/27

Definitions for science!

It is essential to properly define:

I The objects we use, e.g. what kind of basic functionality
(“API”) is required (so that there’s no ambiguity about what
we’re talking about)

I The properties we want the objects to further satisfy, e.g.
what kind of security we expect (so that there’s no ambiguity
about whether we’ve succeeded or not)

One of the main goals of this course: learn about cryptographic
objects AND some associated security properties!

Introduction 2022–02–02 15/27

Models are hard

I In crypto, it is common to have several security models for a
single object

I For instance a block cipher may be analysed w.r.t. PRP,
SPRP, XRKA-PRP, KCA... security or may further be
assumed to be ideal!

I One needs to use a model appropriate for its actual use
(symmetric encryption, building a tweakable block cipher, a
compression function...)

Introduction 2022–02–02 16/27

A quick model example

Indistiguishability in a chosen-plaintext setting (IND-CPA); fair
model to decide if O implements a good symmetric encryption
scheme:

1 Submit messages to an oracle O to be encrypted, & get the
result

2 Choose, m0, m1 of equal length; send both to O
3 Receive O(mb) for a random b ∈ {0, 1}
4 Goal: determine the value of b (better than by guessing)

I O has to be randomized

Introduction 2022–02–02 17/27

A code that’s not IND-CPA

Figure: Calvin & Hobbes’ code (Watterson)

Introduction 2022–02–02 18/27

Randomness is key in crypto

Random numbers always needed

I To generate (secret) keys

I To generate (public) initialization vectors (IVs) or nonces

I To generate random masks (to protect against some attacks)

I Etc.

Introduction 2022–02–02 19/27

Random number generation is not easy

Lead to severe vulnerabilities, several times. For instance:

I Debian’s OpenSSL key generation (2006–2008)

I WWW RSA private keys with shared factors (Lenstra et al.,
2012)

I Smartcard RSA w/ biased private keys (Bernstein et al., 2013)

I Smartcard RSA w/ biased private keys (Nemec et al., 2017)

Not even counting the issues with backdoored PRNGs (e.g.,
DualEC)...

Introduction 2022–02–02 20/27

Are random numbers all you need?

A “perfect” encryption scheme, the one-time pad

1 Let the message m be in {0, 1}n, n maybe large (say, 240)

2 Let the key k be drawn uniformly at random in {0, 1}n,
written k � {0, 1}n

3 The ciphertext c := m ⊕ k

I Knowing c does not give information about m (see TD)

Problems:

I Integrity not guaranteed. So actually NOT perfect in presence
of active adversaries (i.e. all the time)

I Needs very large keys

I Needs “perfect” randomness too!

Introduction 2022–02–02 21/27

What do you need then? Symmetric primitives!

I Stream ciphers (computational variants of OTP), e.g. RC4
(broken), Trivium...

I Block ciphers (encrypt “blocks”), e.g. AES

I Message authentication codes (MACs, check authenticity),
e.g. {A,B,C,D,E,F,G,H,I,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Z}MAC
(For more on the topic, cf. https:

//membres-ljk.imag.fr/Pierre.Karpman/JMAC.pdf)

I Hash functions (securely compress long messages to short
digests), e.g. SHA-3

Also need, say, mode of operations (to get e.g. IND-CPA)

https://membres-ljk.imag.fr/Pierre.Karpman/JMAC.pdf
https://membres-ljk.imag.fr/Pierre.Karpman/JMAC.pdf

Introduction 2022–02–02 22/27

Complementary primitives: public-key cryptography

Not all primitives need a single secret key/parameter. One can also
have

I Trapdoor permutations (easy to encrypt, hard to decrypt w/o
the trapdoor), e.g. RSA

I Public key exchange, e.g. Diffie-Hellman

I Signatures, e.g. DSA

Introduction 2022–02–02 23/27

We also need assumptions!

Public-key schemes usually depend on “cryptographic
assumptions” (= hardness of some problems), e.g:

I Factorization of large numbers (¬PQ)

I Computing discrete logarithms in F×
q , E (Fq), ... (¬PQ)

I Decoding a noisy codeword of a random error-correcting code
(PQ)

I Finding a short vector in a lattice (PQ)

I Solving a quadratic system of equations (PQ)

I “Inverting” hash functions (PQ)

I Etc.

Note: Assumptions can be attacked!

Introduction 2022–02–02 24/27

We need keys: secret, private, public...

What are crypto keys like?

I Stream/Block cipher: a binary string

I Hash functions: ∅
I RSA: a prime number (secret), an integer (public)

I Diffie-Hellman: an integer (secret), a group element (public)

I Code-based: a (generating) matrix (of a linear code) (one
secret, one public)

I Etc.

Introduction 2022–02–02 25/27

Secrets large and small

What should the secret/public key size be (in bits)?

I Block ciphers?

I RSA?

I Diffie-Hellman (well-chosen F×
q)?

I Diffie-Hellman (well-chosen E (Fq))?

I Code-based (McEliece, Binary Goppa codes)?

Introduction 2022–02–02 25/27

Secrets large and small

What should the secret/public key size be (in bits)?

I Block ciphers: e.g. 128 bits

I RSA: e.g. 3072 bits

I Diffie-Hellman (well-chosen F×
q): e.g. 3072 bits

I Diffie-Hellman (well-chosen E (Fq)): e.g. 256 bits

I Code-based (McEliece, Binary Goppa codes)? e.g. 200 000
bytes

Introduction 2022–02–02 25/27

Secrets large and small

What should the secret/public key size be (in bits)?

⇒ Quite a complex matter! (Follow recommendations, e.g. from
ANSSI!)

Introduction 2022–02–02 26/27

What’s 128 bits anyway?

Objective: run a function 2128 times within 34 years (≈ 230

seconds), assuming:

I Hardware at 250 iterations/s (that’s pretty good)

I Trivially parallelizable (that’s not always the case in practice)

I 1000 W per device, no overhead e.g. for cooling (that’s pretty
good)

⇒
I 2128−50−30 ≈ 248 machines needed
I ≈ 280 000 000 GW ’round the clock
I ≈ 170 000 000 EPR nuclear reactors

(Of course technology may improve, but this gives quite a safe
margin. One must however be careful about the exact attack
setting (more of that another day))

Introduction 2022–02–02 27/27

That’s all for today

Next week:

I Block ciphers: what, why, how?

