
Introduction to Cryptology (GBIN8U16)

TP — Multicollisions for narrow-pipe Merkle-Damg̊ard hash

functions

2021-03/04

Grading

This TP is graded as the contrôle continu of this course. You must send a written report (in
a portable format) detailing your answers to the questions, and the corresponding source
code, including all tests, with compilation and execution instructions by the end of
April, (2021-04-30T23:59+0200) to:

pierre.karpman@univ-grenoble-alpes.fr.

Working in teams of two is allowed but not mandatory. In that case only a single report
must be sent, with the two team members clearly identified.

1 Description of the attack

Let H : {0, 1}∗ → {0, 1}n be a narrow-pipe Merkle-Damg̊ard hash function based on a
compression function F : {0, 1}b × {0, 1}n → {0, 1}n (where we assume for simplicity that
b > n/2), a padding π and using an IV ι, meaning that if π(m) writes m1||m2|| · · · ||m`

with all the mi’s in {0, 1}b, define h1 := F(m1, ι), hi := F(mi, hi−1) for 1 < i ≤ `, and
H(m) := h`.

One may then observe that ifm
(0)
1 ,m

(1)
1 , . . . ,m

(0)
d ,m

(1)
d ∈ {0, 1}

b are such that F(m
(0)
1 , ι) =

F(m
(1)
1 , ι) =: h1 and F(m

(0)
i , hi−1) = F(m

(1)
i , hi−1) =: hi for 1 < i ≤ d, then the 2d d × b-

bit-long messages ms := m
(s[1])
1 || · · · ||m(s[d])

d indexed by s ∈ {0, 1}d form a 2d-collision for
H, i.e. ∀s H(ms) = c for some constant c ∈ {0, 1}n.

2 Theoretical study

Q.1: Let H be as in the previous section, what is the time complexity of computing a
2d-collision using the above attack, assuming that F is ideally random?∗

Q.2: Assume now that H itself is ideal, what is the complexity of computing a 2d-collision
for “small” values of 2d, where you may use the following (actually incorrect) approxima-
tions:

∗Meaning that for all x, y, the outputs F(x, y) are uniformly and independently distributed.

1

mailto:pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_intro2020_tp.pdf

—
(q
2d

)
≈ q2d (quite wrong, esp. for large (w.r.t. q) values of 2d);

— If L is a set of uniformly and independently distributed random variables over D, then
all its

(#L
2d

)
size-2d subsets are uniformly and independently distributed over D2d .

Q.3: Using your answer from Q.2, what are the following complexities and costs:

1. Computing a 4-collision for an n-bit ideal hash function.

2. Computing a 8-collision for an n-bit ideal hash function.

3. Computing a 16-collision for an n-bit ideal hash function.

4. Computing a 4-collision for a 48-bit “ideal” hash function.

5. Computing a 8-collision for a 48-bit “ideal” hash function.

6. Computing a 16-collision for a 48-bit “ideal” hash function.

Q.4: Does a narrow-pipe Merkle-Damg̊ard hash function with an ideal compression func-
tion behave like an ideal hash function?

3 Implementing the attack

Download the tarball https://www-ljk.imag.fr/membres/Pierre.Karpman/mc.tar.bz2.
The file mc48.h defines a function tcz48_dm which implements a toy compression function
with 128-bit message blocks and 48-bit chaining values, and an associated narrow-pipe
Merkle-Damg̊ard hash function ht48. The file xoshiro256starstar.h defines a pseudo-
random number generator xoshiro256starstar_random that you may use in your program.

Q.5: Implement in C the multi-collision attack described in Section 1 for the hash function
ht48. You must write this as a function void attack(int d) which takes as input an
argument d and writes on the standard output a list of 2d colliding messages. An example
of output with basic formatting is given in the tarball. Note that you are not allowed to
rely on external software or library functions to implement the data structures that you
may need.
Advice:

— Start by writing a function:

void find_col(uint8_t h[6], uint8_t m1[16], uint8_t m2[16])}

that searches for a collision for the compression function tcz48_dm.

— For the considered hash function output size of 48 bits, an algorithm using a lot of
memory is acceptable, but choose your data structures wisely.

— The full attack should not need much more than a hundred lines to be implemented.

— Don’t forget to use optimisation flags when compiling.

— As an indication of acceptable performance, it took 208 seconds on an average laptop
to produce the example output found in the tarball.

Q.6: Compute a few (e.g. up to 10) 2, 4, 8, and 16-collisions, and compare the experi-
mental performance of your attack with the theoretical analysis you carried out in Q.1.

2

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_intro2020_tp.pdf
https://www-ljk.imag.fr/membres/Pierre.Karpman/mc.tar.bz2

	Description of the attack
	Theoretical study
	Implementing the attack

