Introduction to cryptology
 TD\#4

2021-W14, ...

Exercise 1: Discrete logarithms (Mix exams '18 \& '19)

In the following questions, \mathbb{G} is a finite cyclic group of prime order p (meaning that it contains p elements), g denotes one of its generators, and $h \neq g$ another element of \mathbb{G}.

Q. 1:

1. Give an example of a finite cyclic group, and specify its order and whether it is prime.
2. Under which condition is h a generator of \mathbb{G} ?
3. Give the definition of the discrete logarithm of h with respect to g.
4. Is the map $\llbracket 0, p-1 \rrbracket \rightarrow \mathbb{G}, x \mapsto g^{x}$ injective? What if we take $x \in \llbracket 0, p \rrbracket$ instead?
5. Give an algorithm that computes the inverse of an element in \mathbb{G}.
6. Is the map $\mathbb{G} \rightarrow \mathbb{G}, x \mapsto h x$ a permutation for all h ? If not, under which condition on h is it one?

The discrete logarithm (DLOG) assumption for \mathbb{G} states that given $g, h=g^{a}$, with $a \longleftarrow \llbracket 0, p-1 \rrbracket$, it is hard to compute the discrete logarithm of h in base g. An adversary is said to break DLOG if she/he is able to perform this computation.
Q. 2: The computational Diffie-Hellman (CDH) assumption states that given g, g^{a}, g^{b}, with $a \leftarrow$ $\llbracket 0, p-1 \rrbracket, b \leftarrow \llbracket 0, p-1 \rrbracket$, it is hard to find $g^{a b}$. An adversary is said to break CDH if she/he is able to find $g^{a b}$.

1. Show that if one can compute discrete logarithms in base g with cost L and an exponentiation in an arbitrary base with cost E, then one can break CDH with cost $\leq L+E$.
Q. 3: We define the decisional Diffie-Hellman problem (DDH) as follows: an adversary is given one of the two triples $\left(g^{a}, g^{b}, g^{a b}\right)$, with $a, b \varangle \llbracket 0, p-1 \rrbracket$ or $\left(g^{a}, g^{b}, g^{c}\right)$, with $a, b, c \varangle \llbracket 0, p-1 \rrbracket$, each with probability 0.5 . The adversary wins if it correctly guesses which triple it was given. The DDH assumption then states that it is hard to win the DDH game with a significant advantage over a random choice.
2. Show that if one can break CDH with cost C, one can break DDH with advantage 1 with cost C.
Q. 4: An assumption A is said to be stronger than an assumption B if breaking B implies breaking A with a similar cost, but breaking A does not necessarily imply breaking B with a similar cost.
3. Order the $\mathrm{DDH}, \mathrm{CDH}$ and DLOG assumptions from weakest to strongest.

Exercise 2: Interactive proof of identity

Let $\mathbb{G}=\langle g\rangle$ be a finite group of prime order p where the discrete logarithm problem is hard. A prover wants to prove to a verifier that $\mathrm{s} /$ he knows a number x s.t. $X=g^{x}$, with $X \in \mathbb{G}$. S/he suggests the following protocol for a verifier to check this assertion:

1. The prover picks $r \llbracket \llbracket 0, p-1 \rrbracket$ and sends $R=g^{r}$ to the verifier
2. The verifier picks a challenge $c \pi \llbracket[0, p-1 \rrbracket$ and sends it to the prover
3. The prover computes $a=r+c x \bmod p$ and sends it to the verifier
4. The verifier computes g^{a} and accepts the proof iff. it is equal to $R X^{c}$
Q. 1: Show that if the prover indeed knows x, the verifier always accepts the proof.
Q. 2: Why is it important for an honest prover to pick a random r ? What would happen if r was easy to predict (say with probability larger than 2^{-40})?
Q. 3: When running the protocol twice, why is it important for the two random numbers r and r^{\prime} to be distinct?
Q. 4: Show that by picking R and c him/herself, a challenger is able to create a fake run of the protocol that is indistiguishable from a real one. (Hint: try to first pick c and a and compute an R that makes the proof valid.)

Remark: This last property of the above protocol has interesting consequences: it ensures that the prover does not reveal any information about the secret x. The same secret may then be used in many proofs without decreasing the security.
Q. 5: Despite the previous remark, why is there still a limit on the number of times a single secret may be used?

Exercise 3: Random Self-Reducibility of the DLP

In this short exercise, we will see that in prime-order groups, the ability to solve the discrete logarithm problem on "average" allows to solve the problem on any instance with a similar cost. This shows that the worst-case complexity of the problem is not more than the one of average cases (where an average case is defined to be a random problem instance)..

Let $\mathbb{G}=\langle g\rangle$ be a finite group of prime order p.
Q. 1: Show how one can construct such a group \mathbb{G} from the multiplicative group $\mathbb{F}_{2 p+1}^{\times}$of the field with $2 p+1$ elements, when p is a Sophie Germain prime. More precisely, give an efficient (possibly randomised) algorithm that takes p as input and returns a generator of a subgroup of order p of $\mathbb{F}_{2 p+1}^{\times}$.
Q. 2: Let $h=g^{a}$ be an element whose discrete logarithm we wish to compute. Show that if one knows $r \in \llbracket 1, p-1 \rrbracket$, this is equivalent to computing the discrete logarithm of $g^{a r}$. How would you need to adapt the statement if \mathbb{G} were not of prime order?
Q. 3: Let $a \in \llbracket 1, p-1 \rrbracket$, explain why if $r \nVdash \llbracket 0, p-1 \rrbracket$, then $\operatorname{Pr}\left[g^{a r}=X\right]=1 / p$ for all $X \in \mathbb{G}$. How would you need to adapt the statement if \mathbb{G} were not of prime order?
Q. 4: Assuming you know an efficient deterministic algorithm to compute the discrete logarithm of a fraction of 2^{-10} of the elements of \mathbb{G}, give an efficient randomized Las-Vegas algorithm that computes the discrete logarithm of any element of \mathbb{G}.

