Introduction to cryptology TD#2

2021-W06,...

Exercise 1: Arithmetic in $\mathbb{Z}/2^8\mathbb{Z}$ and \mathbb{F}_{2^8}

Q. 1: Compute the following in $\mathbb{Z}/2^8\mathbb{Z}$:

- 1. 153 + 221
- $2.\ 29+8$
- 3.64 + 31

Q. 2: Compute the following in \mathbb{F}_2^8 (where a decimal representation is used for the elements, i.e. the addition corresponds to the bitwise XOR):

- 1. 153 + 221
- $2.\ 29+8$
- 3.64 + 31

Q. 3: Under what condition on their operands are the additions in $\mathbb{Z}/2^8\mathbb{Z}$ and \mathbb{F}_{2^8} equivalent?

Exercise 2: Bit-vector arithmetic

Q. 1: Write a small "naïve" C function that computes the scalar product of two vectors of \mathbb{F}_2^{32} . This function must have the following prototype:

uint32_t scalar32_naive(uint32_t x, uint32_t y).

Q. 2: Write another implementation of the same function, of prototype

uint32_t scalar32_popcnt(uint32_t x, uint32_t y),

that uses a *bitwise and* instruction "&" and the *population count* function for 32-bit words "__builtin_popcount()".

Q. 3 Explain why in C, assuming that x is of type uint32_t, x << 1 computes the multiplication of x by two in $\mathbb{Z}/2^{32}\mathbb{Z}$.

Q. 4 Explain why in C, assuming that x is of type $uint32_t$, x >> 1 is equivalent to x / 2.

Q. 5

1. Write the matrix M of dimension 8 over \mathbb{F}_2 such that Mx = mul2(x), where mul2 is defined as:

```
uint8_t mul2(uint8_t x)
{
   return ((x << 1) & 0xFF);
}</pre>
```

and \mathbf{x} and \mathbf{x} are in natural correspondence (with the encoding convention that $\mathbf{x} = (\mathbf{x}_0 \ \mathbf{x}_1 \ \dots \mathbf{x}_7)^t \mapsto \mathbf{x}_7 2^7 + \mathbf{x}_6 2^6 + \dots + \mathbf{x}_0 2^0).$

2. Is this matrix invertible?

Q. 6 What are the logical formulas computed by the following functions on their inputs?

```
uint32_t f1(uint32_t x, uint32_t y, uint32_t z)
{
   return ((x & y) | (~x & z));
}
uint32_t f2(uint32_t x, uint32_t y, uint32_t z)
{
   return ((x & y) | (x & z) | (y & z));
}
uint32_t f3(uint32_t x, uint32_t y, uint32_t z)
{
   return (z ^ (x & (y ^ z)));
}
```

Which of these functions can be computed as a matrix-vector product?

Exercise 3: PRPs

Let $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher for which there is a subset $\mathcal{K}' \subset \{0,1\}^{\kappa}$ of weak keys of size 2^w such that if $k \in \mathcal{K}', \mathcal{E}(k, \cdot) : x \mapsto x$.

Q. 1: Give a lower-bound for $\mathbf{Adv}_{\mathcal{E}}^{\mathrm{PRP}}(1,1)$.

Q. 2: Some mode of operation of block ciphers rely on the fact that $\mathcal{E}(k, 0)$ is an unpredictable value when k is picked uniformly at random and kept secret (with 0 denoting the all-zero binary string).

Show that this is a reasonable assumption. More precisely, give a lower-bound on $\mathbf{Adv}_{\mathcal{E}}^{\mathrm{PRP}}(1,1)$ assuming that one can predict this value with unit time and success probability p.

Exercise 4: Format-preserving encryption (Adapted from M2's exam, 2021)

A format-preserving block cipher is a block cipher $\mathcal{E} : \{0,1\}^{\kappa} \times S \to S$ where S is an arbitrary finite set (that is S is not necessarily equal to $\{0,1\}^n$ for some n). For instance, S could be $\prod_{\leq 2^{128}}$, the set of primes less than 2^{128} .

The cycle walking algorithm is a method to convert a block cipher $\mathcal{E} : \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ into $\mathcal{E}' : \{0,1\}^{\kappa} \times \mathcal{S} \to \mathcal{S}$ for any $\mathcal{S} \subseteq \{0,1\}^n$ as long as it is efficient to test if an element of $\{0,1\}^n$ is in \mathcal{S} . It works as follows: to encrypt $x \in \mathcal{S}$ with the key k, compute $x' := \mathcal{E}(k, x)$. If $x' \in \mathcal{S}$ then return x'; otherwise iterate the process by computing $x'' = \mathcal{E}(k, x')$ and testing if it is in \mathcal{S} , etc.

Q.1

- 1. Give an algorithm for the inverse \mathcal{E}'^{-1} : $\{0,1\}^{\kappa} \times S \to S$ of a block cipher \mathcal{E}' over S obtained from cycle walking applied to some suitable block cipher \mathcal{E} .
- 2. Show that the condition that $S \subseteq \{0,1\}^n$ be efficiently testable is not enough to guarantee that cycle walking will result in an efficient block cipher.

We now suppose the existence of a black-box algorithm that efficiently converts a block cipher $\mathcal{E} : \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ into $\mathcal{E}' : \{0,1\}^{\kappa} \times \{0,1\}^{n'} \to \{0,1\}^{n'}$ for any 0 < n' < n.

Q.2

- 1. How does the existence of this black-box allow to remedy the efficiency problem from the previous question?
- 2. Are there still sets for which cycle walking is inefficient?

Exercise 5: CTR mode

Let $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher. The CTR encryption of a message $m = m_0 ||m_1|| \dots$ (where all of the m_i s are *n*-bit long) with \mathcal{E} and a key k is given by $m_0 \oplus \mathcal{E}(k, t_0) ||m_1 \oplus \mathcal{E}(k, t_1) \dots$, where the t_i s are *n*-bit pairwise-distinct values (for instance one can take $t_0 = 0, t_1 = 1$, etc.). In other words, one is encrypting a message with a pseudo-random keystream generated by \mathcal{E} .

Q.1: Show that the keystream used to encrypt a message of 2^n blocks (that is $n2^n$ -bit long) is easy to distinguish from one drawn uniformly at random random, if it is generated with a single key.

Hint: Exploit the fact that $\mathcal{E}(k, \cdot)$ is invertible, and the bound $n! < (n/2)^n$ (valid for n > 5).

We may try to solve the problem of the previous question by defining $\mathcal{F}(k,x) := \mathcal{E}(k,x) \oplus x$. This makes \mathcal{F} non-injective. One may then still encrypt a message $m = m_0 ||m_1|| \dots$ as $m_0 \oplus \mathcal{F}(k,t_0) ||m_1 \oplus \mathcal{F}(k,t_1) \dots$

Q. 2: Show that if the t_i values are public, then \mathcal{F} suffers from the same problem as \mathcal{E} in Q. 1.

Remark: It can be shown that if the t_i s are secret and "random" enough (for instance $t_i = \mathcal{E}(k', t'_i)$ where the t'_i s are pairwise distinct), then \mathcal{F} does not suffer from the same limitation as \mathcal{E} in CTR mode any more.