Introduction to cryptology
 TD\#2

2021-W06,...

Exercise 1: Arithmetic in $\mathbb{Z} / 2^{8} \mathbb{Z}$ and $\mathbb{F}_{2^{8}}$

Q. 1: Compute the following in $\mathbb{Z} / 2^{8} \mathbb{Z}$:

1. $153+221$
2. $29+8$
3. $64+31$
Q. 2: Compute the following in \mathbb{F}_{2}^{8} (where a decimal representation is used for the elements, i.e. the addition corresponds to the bitwise XOR):
4. $153+221$
5. $29+8$
6. $64+31$
Q. 3: Under what condition on their operands are the additions in $\mathbb{Z} / 2^{8} \mathbb{Z}$ and $\mathbb{F}_{2^{8}}$ equivalent?

Exercise 2: Bit-vector arithmetic

Q. 1: Write a small "naïve" C function that computes the scalar product of two vectors of \mathbb{F}_{2}^{32}. This function must have the following prototype:

```
uint32_t scalar32_naive(uint32_t x, uint32_t y).
```

Q. 2: Write another implementation of the same function, of prototype

```
uint32_t scalar32_popcnt(uint32_t x, uint32_t y),
```

that uses a bitwise and instruction "\&" and the population count function for 32-bit words "__builtin_popcount()".
Q. 3 Explain why in C, assuming that x is of type uint32_t, $\mathrm{x} \ll 1$ computes the multiplication of x by two in $\mathbb{Z} / 2^{32} \mathbb{Z}$.
Q. 4 Explain why in C , assuming that x is of type uint32_t, $\mathrm{x} \gg 1$ is equivalent to x / 2.

Q. 5

1. Write the matrix \boldsymbol{M} of dimension 8 over \mathbb{F}_{2} such that $\boldsymbol{M} \boldsymbol{x}=\operatorname{mul2}(\mathrm{x})$, where mul2 is defined as:
```
uint8_t mul2(uint8_t x)
{
    return ((x << 1) & 0xFF);
}
```

and \boldsymbol{x} and x are in natural correspondence (with the encoding convention that $\left.\boldsymbol{x}=\left(\begin{array}{llll}x_{0} & x_{1} & \ldots \boldsymbol{x}_{7}\end{array}\right)^{t} \mapsto \boldsymbol{x}_{7} 2^{7}+\boldsymbol{x}_{6} 2^{6}+\ldots+\boldsymbol{x}_{0} 2^{0}.\right)$.
2. Is this matrix invertible?
Q. 6 What are the logical formulas computed by the following functions on their inputs?

```
uint32_t f1(uint32_t x, uint32_t y, uint32_t z)
{
    return ((x & y) | (~x & z));
}
uint32_t f2(uint32_t x, uint32_t y, uint32_t z)
{
    return ((x & y) | (x & z) | (y & z));
}
uint32_t f3(uint32_t x, uint32_t y, uint32_t z)
{
    return (z - (x & (y ~ z)));
}
```

Which of these functions can be computed as a matrix-vector product?

Exercise 3: PRPs

Let $\mathcal{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher for which there is a subset $\mathcal{K}^{\prime} \subset\{0,1\}^{\kappa}$ of weak keys of size 2^{w} such that if $k \in \mathcal{K}^{\prime}, \mathcal{E}(k, \cdot): x \mapsto x$.
Q. 1: Give a lower-bound for $\operatorname{Adv}_{\mathcal{E}}{ }^{\mathrm{PRP}}(1,1)$.
Q. 2: Some mode of operation of block ciphers rely on the fact that $\mathcal{E}(k, 0)$ is an unpredictable value when k is picked uniformly at random and kept secret (with 0 denoting the all-zero binary string).

Show that this is a reasonable assumption. More precisely, give a lower-bound on $\operatorname{Adv}_{\mathcal{E}}{ }^{\mathrm{PRP}}(1,1)$ assuming that one can predict this value with unit time and success probability p.

Exercise 4: Format-preserving encryption (Adapted from M2's exam, 2021)

A format-preserving block cipher is a block cipher $\mathcal{E}:\{0,1\}^{\kappa} \times \mathcal{S} \rightarrow \mathcal{S}$ where \mathcal{S} is an arbitrary finite set (that is \mathcal{S} is not necessarily equal to $\{0,1\}^{n}$ for some n). For instance, \mathcal{S} could be $\Pi_{\leq 2^{128}}$, the set of primes less than 2^{128}.

The cycle walking algorithm is a method to convert a block cipher $\mathcal{E}:\{0,1\}^{\kappa} \times$ $\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ into $\mathcal{E}^{\prime}:\{0,1\}^{\kappa} \times \mathcal{S} \rightarrow \mathcal{S}$ for any $\mathcal{S} \subseteq\{0,1\}^{n}$ as long as it is efficient to test if an element of $\{0,1\}^{n}$ is in \mathcal{S}. It works as follows: to encrypt $x \in \mathcal{S}$ with the key k, compute $x^{\prime}:=\mathcal{E}(k, x)$. If $x^{\prime} \in \mathcal{S}$ then return x^{\prime}; otherwise iterate the process by computing $x^{\prime \prime}=\mathcal{E}\left(k, x^{\prime}\right)$ and testing if it is in \mathcal{S}, etc.

Q. 1

1. Give an algorithm for the inverse $\mathcal{E}^{\prime-1}:\{0,1\}^{\kappa} \times \mathcal{S} \rightarrow \mathcal{S}$ of a block cipher \mathcal{E}^{\prime} over \mathcal{S} obtained from cycle walking applied to some suitable block cipher \mathcal{E}.
2. Show that the condition that $\mathcal{S} \subseteq\{0,1\}^{n}$ be efficiently testable is not enough to guarantee that cycle walking will result in an efficient block cipher.

We now suppose the existence of a black-box algorithm that efficiently converts a block cipher $\mathcal{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ into $\mathcal{E}^{\prime}:\{0,1\}^{\kappa} \times\{0,1\}^{n^{\prime}} \rightarrow\{0,1\}^{n^{\prime}}$ for any $0<n^{\prime}<n$.

Q. 2

1. How does the existence of this black-box allow to remedy the efficiency problem from the previous question?
2. Are there still sets for which cycle walking is inefficient?

Exercise 5: CTR mode

Let $\mathcal{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher. The CTR encryption of a message $m=m_{0}\left\|m_{1}\right\| \ldots$ (where all of the m_{i} s are n-bit long) with \mathcal{E} and a key k is given by $m_{0} \oplus \mathcal{E}\left(k, t_{0}\right) \| m_{1} \oplus \mathcal{E}\left(k, t_{1}\right) \ldots$, where the t_{i} s are n-bit pairwise-distinct values (for instance one can take $t_{0}=0, t_{1}=1$, etc.). In other words, one is encrypting a message with a pseudo-random keystream generated by \mathcal{E}.
Q. 1 : Show that the keystream used to encrypt a message of 2^{n} blocks (that is $n 2^{n}$-bit long) is easy to distinguish from one drawn uniformly at random random, if it is generated with a single key.

Hint: Exploit the fact that $\mathcal{E}(k, \cdot)$ is invertible, and the bound $n!<(n / 2)^{n}$ (valid for $n>5$).

We may try to solve the problem of the previous question by defining $\mathcal{F}(k, x):=$ $\mathcal{E}(k, x) \oplus x$. This makes \mathcal{F} non-injective. One may then still encrypt a message $m=$ $m_{0}\left\|m_{1}\right\| \ldots$ as $m_{0} \oplus \mathcal{F}\left(k, t_{0}\right) \| m_{1} \oplus \mathcal{F}\left(k, t_{1}\right) \ldots$
Q. 2 : Show that if the t_{i} values are public, then \mathcal{F} suffers from the same problem as \mathcal{E} in Q. 1.

Remark: It can be shown that if the t_{i} s are secret and "random" enough (for instance $t_{i}=\mathcal{E}\left(k^{\prime}, t_{i}^{\prime}\right)$ where the $t_{i}^{\prime} \mathrm{s}$ are pairwise distinct), then \mathcal{F} does not suffer from the same limitation as \mathcal{E} in CTR mode any more.

