
Introduction to cryptology

(GBIN8U16)

Final Examination

2021-05-12

Instructions

— One two-sided A4 page of (handwritten or typed) notes allowed.

— Except indicated otherwise, answers must be carefully justified to get maximum credit.

— Not all questions are independent, but you may admit a result from a previous ques-
tion by clearly stating it.

— You may answer in English or French.

— Duration: 3 hours.

Notation & definitions

We recall some notation and the following definitions, which are useful in Ex. 1 and 3.

— For any finite set S, we write X � S to mean that the random variable X is sampled
uniformly from S. Furthermore, in notation such as X � S, Y � S, the samplings
of X and Y are independent (except specified otherwise).

— Perms({0, 1}n) denotes the set of all permutations over {0, 1}n.

— Funcs(X) denotes the set of all functions X → {0, 1}n (where n is either already
defined from the context, or introduced by the definition).

— ·||· denotes string concatenation.

— log(.) is the (usual) logarithm function in base two.

Definition 1 (PRP advantage). Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a block cipher, the
PRP advantage of E is defined as: AdvPRP

E (q, t) =

max
Aq,t

|Pr[AO
q,t() = 1 : O � Perms({0, 1}n)]

−Pr[AO
q,t() = 1 : O = E (k, ·), k � {0, 1}κ]|

Where AO
q,t denotes an algorithm that runs in time t and makes q queries to the oracle O

it is given access to.

1

Definition 2 (PRF advantage). Let F : {0, 1}κ × X → {0, 1}n be a family of functions,
the PRF advantage of F is defined as: AdvPRF

F (q, t) =

max
Aq,t

|Pr[AO
q,t() = 1 : O � Funcs(X)]

−Pr[AO
q,t() = 1 : O = F (k, ·), k � {0, 1}κ]|

Where AO
q,t denotes an algorithm that runs in time t and makes q queries to the oracle O

it is given access to.

Definition 3 (Existential forgeries). Let M : {0, 1}κ × X → {0, 1}n be a MAC, then an
existential forgery for M is an algorithm AO

q,t that takes no input, with oracle access to
O = M (k, ·), k � {0, 1}κ to which it makes q queries, that runs in time t, and which
outputs (x, y) ∈ X × {0, 1}n. The algorithm is said to win the existential forgery game if:
1) x was not queried by A to its oracle; 2) O(x) = y. It loses otherwise.

Definition 4 (Universal forgeries). Let M : {0, 1}κ × X → {0, 1}n be a MAC, then a
universal forgery for M is an algorithm AO

q,t that takes an input x ∈ X , with oracle access
to O = M (k, ·), k � {0, 1}κ to which it makes q queries, that runs in time t, and which
outputs y ∈ {0, 1}n. The algorithm is said to win the universal forgery game if: 1) x was
not queried by A to its oracle; 2) O(x) = y. It loses otherwise.

Exercise 1: PRP-PRF switching

We first consider an oracle O : {0, 1}n → {0, 1}n, which can be one of two things:

— In the PRP world, O � Perms({0, 1}n). Said otherwise, it samples its outputs
uniformly from {0, 1}n without replacement.

— In the PRF world, O � Funcs({0, 1}n). Said otherwise, it samples its outputs uni-
formly from {0, 1}n with replacement.

Q.1: We consider an algorithm AO
q which makes q (distinct) queries x1, . . . , xq to its oracle

O.
Give an estimate for the probability ∈ [0, 1] that there is a collision between two outputs

of O in the PRP (resp. PRF) world, i.e. estimate the following:

1. pPq := Pr[∃ i, j 6= i,O(xi) = O(xj) : O � Perms({0, 1}n)];

2. pFq := Pr[∃ i, j 6= i,O(xi) = O(xj) : O � Funcs({0, 1}n)].

Only a brief justification of your answers is necessary.

Q.2: Using your answers to the previous question:

1. Specify a distinguisher AO that returns 1 if O is believed to be in the PRP world,
and 0 if it is believed to be in the PRF world.

2. Estimate its advantage |Pr[AO
q () = 1 : O � Perms({0, 1}n)] − Pr[AO

q () = 1 : O �
Funcs({0, 1}n)]| in function of the number of queries q made to the oracle only (i.e.
where its running time may be arbitrary).1

1This is usually called an information-theoretic distinguisher, or a distinguisher in the information theory
setting.

2

Q.3: We now consider a block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n s.t. AdvPRP
E (q, t) =

t/2κ when q > O(n/κ). We wish to analyse E in a “PRF setting”.

1. Based on your distinguisher from Q.2 and the definition of E , give a lower-bound for
AdvPRF

E (q, t). You do not need to specify a matching distinguisher.

Q.4: We now consider a family of functions F : {0, 1}κ×{0, 1}n → {0, 1}n s.t. AdvPRF
F (q, t) =

t/2κ when q > O(n/κ).

1. Is it possible to analyse F in a “PRP setting”, i.e. to study AdvPRP
F (q, t)?

Q.5:

1. Is it possible and meaningful to use a “good PRP” block cipher E : {0, 1}κ×{0, 1}n →
{0, 1}n in a context where a “good PRF” family of functions F : {0, 1}κ × {0, 1}n →
{0, 1}n is expected? If yes, what would one “lose” by doing so?

2. Is it possible and meaningful to use a “good PRF” family of functions F : {0, 1}κ ×
{0, 1}n → {0, 1}n in a context where a “good PRP” block cipher E : {0, 1}κ ×
{0, 1}n → {0, 1}n is expected? If yes, what would one “lose” by doing so?

Exercise 2: Ideal XOFs

Let H : {0, 1}? → {0, 1}n be an ideal hash function, in that ∀x ∈ {0, 1}?,H (x) � {0, 1}n
(with the drawings for distinct inputs being independent). We wish to use H to build a
hash function with a larger co-domain, while preserving the “idealness” of the resulting
construction.

Q.1: We first consider H ′ : {0, 1}? → {0, 1}2n, x 7→ H (x)||H (x||1).

1. Show that not all outputs of H ′ are independent.

2. Could you call H ′ an ideal hash function?

Q.2: Let H 0 : {0, 1}? → {0, 1}n, x 7→ H (0||x), H 1 : {0, 1}? → {0, 1}n, x 7→ H (1||x).

1. Show that the domain-separated H 0 and H 1 are independent ideal hash functions
(that is, show that their outputs are uniformly distributed and independent2).

Q.3:

1. Using H as a black box, specify (and justify) an ideal hash function construction
H ′′ : {0, 1}? → {0, 1}`n, where ` > 1 is a known integer.

Exercise 3: MAC definitions; RC4-MAC

We first consider a deterministic MAC M : {0, 1}κ ×X → {0, 1}n.

Q.1: Suppose that you know a universal forgery A for M that wins the universal forgery
game with probability pU and that runs in time tU and makes qU queries to its oracle.

1. Specify an existential forgery A′ for M that uses A as a black box.

2. Analyse the cost tE and qE of A′ and its success probability pE .

2Quite obviously, their outputs are not independent from the ones of H , but this is irrelevant here.

3

Q.2: Suppose that you know an existential forgery A for M that wins the existential
forgery game with probability pE and that runs in time tE and makes qE queries to its
oracle.

1. Specify a PRF distinguisher for M that runs in time tF ≈ tE and makes qF ≈ qE

queries to its oracle.

2. Give a lower bound for AdvPRF
M (qF , tF) by analysing the advantage of your distin-

guisher.

3. Is the following (informally stated) scenario possible: “M is vulnerable to an existen-
tial forgery attack, but it is hard to distinguish from a random function”?

4. Show that the following (informally stated scenario) is possible: “There is no effi-
cient existential forgery attack on M , but it is easy to distinguish it from a random
function”. Only a sketch of proof is required here.

Q.3: Recall that an assumption A1 is said to be stronger than an assumption A2 if
breaking A2 implies breaking A1 with a similar cost, but breaking A1 does not necessarily
imply breaking A2 with a similar cost. Consider the three following (informally stated)
assumptions: A1: M is hard to distinguish from a random function; A2: there is no
efficient universal forgery on M ; A3: there is no existential forgery on M .

1. Order the assumptions A1, A2, A3 from weakest to strongest. Be careful to justify
your answer.

2. Suppose that you need a MAC algorithm, and are magically given access to one that
satisfies an assumption that you are free to choose; which of A1, A2 or A3 would you
pick (and why)?

b

RC4 is a stream cipher that can be used to (poorly) encrypt binary strings of arbitrary
length in the following way:

1. Two communicating parties share a secret key k.

2. For each new plaintext p to be encrypted, one picks a unique initialisation vector v.

3. One runs a setup algorithm on the pair (k, v) that returns an initial state s (that
depends on both k and v).

4. One runs the RC4 keystream generator on s, producing a keystream z of the same
length as p.

5. The encryption of p is returned as c := p⊕ z, along with the initialisation vector v.

A designer suggests to use RC4 as the basis of a MAC algorithm. For simplicity, we
assume that the input is at least 128-bit long, or that it has otherwise been padded up
to that length (or longer) using an appropriate injective padding scheme. To authenticate
a message one runs RC4 encryption on the input and returns the last 128 bits of the
ciphertext as a tag. In more details:

1. Two communicating parties share a secret key k.

2. One runs a setup algorithm on the pair (k, 0) that returns an initial state s.

3. For each new input x to be authenticated, one runs the RC4 keystream generator on
s, producing a keystream z of the same length as x.

4. One encrypts x as c := x⊕ z; the last 128 bits of c are returned as the authentication
tag of x.

4

Q.4:

1. Give (and analyse) a very efficient attack on RC4-MAC with respect to one of the
three security notions studied in this exercise.

Exercise 4: Discrete logarithms with low weight

In this exercise, G = 〈g〉 is a cyclic finite group of prime order p (i.e. with p elements
g0, . . . , gp−1). We write n := dlog(p)e, with the logarithm taken in base 2.

We recall that in such a group, the map x 7→ gx is efficiently computable, but that
its inverse gx 7→ x is not in general; since inverting an element of the group is easy, the
map x 7→ g−x is also efficiently computable. We also recall that the baby-step/giant-
step framework may be used to solve a discrete-logarithm problem in G with respect to
the generator g, in the following way: first define ν as

⌈√
p
⌉
, then precompute the list

LG := [(i, giν); 0 ≤ i ≤ ν], and on input ga compute LB := [(i, gag−i); 0 ≤ i ≤ ν].
A collision between the two lists reveals the value a ∈ J0, p − 1K of the desired discrete
logarithm.

We now wish to design algorithms specialised to the case where the discrete logarithm
of the input is known to have a small (binary) weight, where the weight wt(a) of an integer
a ∈ J0, p − 1K is defined as the integer w s.t. a =

∑w
i=1 2ai , with the ai’s pairwise distinct

integers in J0, n − 1K. In other words, w is the number of non-zero bits in the binary
expansion of a. An instance of this problem “LWDLP” is specified as (g, ga, w), with
wt(a) = w.

Q.1:

1. Specify a näıve exhaustive search algorithm for the LWDLP.

2. Do a time and memory cost analysis of this algorithm in the worst case.

3. Compare (roughly) this cost with the one of the baby-step/giant-step algorithm when
n = 256 and w = 10.3

Q.2: Let now a be of even weight w and n be even.

1. Show that ga can be written as gaBgaG where wt(aB) = wt(aG) = w/2.

Let (g, ga, w) be an LWDLP instance, and assume that you additionally know a parti-
tion of J0, n − 1K into two sets SB and SG of size n/2 s.t. {a1, . . . , aw/2} ⊆ SB and
{aw/2+1, . . . , aw} ⊆ SG.

2. Specify a baby-step/giant-step algorithm for this variant of the LWDLP.

3. Do a time and memory cost analysis of this algorithm in the worst case.

4. Compare (roughly) this cost with the one of Q.1 when n = 256 and w = 10.

5. In the general statement of the LWDLP, you do not know a partition SB ∪SG of the
above form; propose a (possibly randomised) strategy to accommodate this issue (no
analysis of the resulting algorithm is required).

Q.3:

1. Given the current state of the art in computers performance, what could you say is
a drawback of the baby-step/giant-step framework to solve a hard problem such as
the LWDLP?

3You may use log(10!) ≈ 21.8.

5

