Introduction to cryptology (GBIN8U16)

Public-Key Cryptography: Discrete logarithm-based schemes

Pierre Karpman

pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2021-04

Dlog PKC 2021-04 1/32

How to get a key

So far we assumed the presence of a shared secret between participants, but how do you get there?

Some possibilities

- Meet in person (impractical)
- Use secure message transmission (not so practical (but very nice!))
- Use asymmetric "public-key" schemes (quite practical)

 our focus now!

Dlog PKC 2021-04 2/32

Public-key algorithms

Some major examples:

- Asymmetric encryption (one key to encrypt, another to decrypt), e.g. RSA (+ some randomized padding)
- Digital signature (one key to sign, another to verify), e.g. DSA
- Public-key key exchange, e.g. Diffie-Hellman

Note: RSA can be used to implement both a key-exchange and a signature

Dlog PKC 2021–04 3/32

Group definitions

Finite cyclic group (multiplicative notation)

A finite group \mathbb{G} of *order* (or cardinality) N is *cyclic* if $\exists g \in \mathbb{G}$ s.t. $\forall x \in \mathbb{G}, \exists i \in [0, N-1]$ s.t. $x = g^i$. Such an element g is called a *generator* (or primitive element) of the group.

Properties

- Any element h of \mathbb{G} generates a subgroup $\mathbb{H} := \langle h \rangle$. The order ord(h) of h is defined as the order (or cardinality) of \mathbb{H} . If $\mathbb{H} = \mathbb{G}$, h is a generator of the full group \mathbb{G} .
- A group may have several generators.
- (Lagrange Theorem) If ℍ is a subgroup of ℍℍℍℍ
 (Corollary: if #ℍ is prime, all elements except 1 are primitive)

Dlog PKC 2021-04 4/32

Group examples

An additive group:

•
$$(\mathbb{Z}/512\mathbb{Z}, +)$$
, $g = 1$, ord $(g) = 512$

Any multiplicative group of a finite field (and more):

- $\mathbb{F}_{257}^{\times}, g = 3, \operatorname{ord}(g) = 256$
- $\mathbb{F}_2[X]/X^8 + X^4 + X^3 + X^2 + 1)^{\times}, g = X, \text{ ord}(g) = 255$
- \triangleright $(\mathbb{Z}/n\mathbb{Z})^{\times}$, of order $\varphi(n)$ (= n-1 when n is prime)
 - Cf. the extended Euclid algorithm... later!

Dlog PKC 2021-04 5/32

Today's focus: Diffie-Hellman

A simple protocol:

- Let $\mathbb{G} = \langle g \rangle$ be a cyclic finite group with a generator g
- ► A picks $a \leftarrow [0, \operatorname{ord}(g) 1]$, sends g^a to B
- ► B picks $b \leftarrow [0, \operatorname{ord}(g) 1]$, sends g^b to A
- A computes $(g^b)^a = g^{ba} = g^{ab}$, sets $k = KDF(g^{ab})$
- ▶ B computes $(g^a)^b = g^{ab}$, sets $k = KDF(g^{ab})$

With KDF some key derivation function (e.g. a ~ hash function)

Dlog PKC 2021-04 6/32

Why this works?

Functionality

- A and B only need public information to perform the exchange
- ► They get the same *k*
- ⇒ Public-key key exchange

Security: necessary conditions

- Given g, g^a, g^b , it must be hard to compute g^{ab}
- $k = KDF(g^{ab})$ must be "random-looking" when a, b are random
- (Related: there must be many possible values for k)

Dlog PKC 2021-04 7/32

Security focus

A necessary condition: computing *discrete logarithms* in G must be "hard"

Discrete logarithm

Let $\mathbb{G} = \langle g \rangle$ be a finite group of order N, the discrete logarithm in base g of $h = g^a$, $a \in [0, N-1]$ is defined as a

How hard is the "discrete logarithm problem" (DLP) for various groups?

Dlog PKC 2021-04 8/32

DLP hardness

Proposition

It is always possible to compute the discrete logarithm in a group of order N in time $O(\sqrt{N})$

So one must at least pick N s.t. $2^{\log(N)/2}$ is large. But:

- ► $(\mathbb{Z}/n\mathbb{Z}, +)$: DLP always easy (logarithm = division)
- \mathbb{F}_q^{\times} : usually hard, not *maximally* hard (needs much less work than \sqrt{N})
- ► $E(\mathbb{F}_q)$: usually maximally hard (needs about \sqrt{N})

Dlog PKC 2021-04 9/32

A simple generic algorithm

Idea: use *collisions* to reveal the solution. One way to do this: baby-step/giant-step

- ▶ Let \mathbb{G} be of order N, $h = g^a$ for some $a \in [0, N-1]$
- Let $r = \lceil \sqrt{N} \rceil$, then $a = ra_1 a_0$, with a_0 , a_1 less than r
- We have $h = g^{ra_1 a_0}$, so $hg^{a_0} = g^{ra_1}$

 \Rightarrow

- **11** Compute $L_0 = [hg^x, x < r], L_1 = [g^{ry}, y < r]$
- **2** Find *i*, *j* s.t. $L_0[i] = L_1[j]$
- Return a = rj i

Baby-step/giant-step: Comments

- The baby-step/giant-step algorithm works with any group
- It has time and memory cost equal to $\sqrt{\operatorname{ord}(\mathbb{G})} \Rightarrow \operatorname{generically}$ optimal (up to the memory cost)!
- It can easily be parallelised
- It can easily be adapted when the logarithm is known to lie in a "small" interval
- Other collision-based algorithms exist with constant or small memory cost (such as Pollard's ρ (also parallelisable) or kangaroos)!
- ▶ Depending on G, better algorithms may be available (we've seen some examples)

Dlog PKC 2021-04 11/32

More on how to pick a group

If the order N of \mathbb{G} is not prime, \mathbb{G} has *subgroups*

Let N = pN', then g^p generates a group of order N'

Proposition (Pohlig-Hellman)

It is possible to solve the DLP in G subgroup-by-subgroup

 \Rightarrow For the DLP to be hard, \mathbb{G} must be of order N s.t. DLP is hard in a subgroup of order p, the largest prime factor of N (Idea: use a Chinese Remainder Theorem-like decomposition; no details)

Dlog PKC 2021-04 12/32

Are we done? Not quite

- Hardness of the DLP cannot be "proven", but a reasonable assumption for some groups
- We may also sometime need g^x to be "random-looking" (ditto)

But regardless, Diffie-Hellman as presented only protects againts *passive* adversaries

⇒ Not very useful in practice

Dlog PKC 2021-04 13/32

Diffie-Hellman with a man in the middle

- ► A sends g^a to B
 - ightharpoonup C intercepts the message, sends g^c to B
- \triangleright B sends g^b to A
 - C intercepts the message, sends g^c to A
- A and C share a key k_a = KDF(g^{ac})
- ▶ B and C share a key k_b = KDF(g^{bc})
- Anytime A sends a message to B with key k_a, C decrypts and re-encrypts with k_b (and vice-versa)

Dlog PKC 2021-04 14/32

One way to solve this: signatures

A wants to be sure it is talking to B

- Find B's public verification key for a signature algorithm
- Ask B to sign g^b
- Only accept it if the signature is valid

Works well, but A needs to know B's public key beforehand

⇒ We again have a bootstrapping issue

So are we back to square one?

Dlog PKC 2021-04 15/32

Public-key infrastructures can help

Public keys still help compared to private ones:

- Possibly long term (v. have to be changed after a while (although not a real limitation))
- Scales linearly w/ the number of participants (v. quadratically)
- Trusting only one key is enough, if it signs all the ones you need!

Dlog PKC 2021-04 **16/32**

Example: TLS certificates

The simple picture:

- Web browsers are pre-loaded with "certificates" (~ public keys) of certification authorities (CAs)
- CAs sign the certificates of websites using secure connections (possibly using intermediaries)
- When connecting to a website, check the entire chain of certificates
- If everything's fine, use the website's public key to authenticate the exchange

Dlog PKC 2021-04 17/32

So how do we sign?

Signature possibilities

- Use a discrete logarithm based protocol
- Or RSA
- But in both cases, also need a hash function!

Dlog PKC 2021-04 18/32

Signatures: what?

Objectives of a signature algorithm:

- Given (sk, pk) a key pair
- ► message m + secret key $sk \rightsquigarrow signature <math>s = S_{sk}(m)$
- message m + signature s + public key $pk \rightsquigarrow verified message <math>V_{pk}(m,s)$

Informal security objectives

- Given pk, it should be hard to find sk
- Given pk, it should be hard to forge signatures
- (Variant: given access to a signing oracle $\mathbb{O}_{(sk,pk)}$, it should be hard to forge signatures)
- Formalised as Existential unforgeability under chosen-message attacks (EUF-CMA)

Dlog PKC 2021-04 19/32

EUF-CMA for Public-Key signatures

EUF-CMA for (S, V): An adversary cannot forge a valid signature σ for a message m such that $V(pk_C, \sigma, m)$ succeeds, when given (restricted) oracle access to $S(sk_C, \cdot)$:

- The Challenger chooses a pair (pk_C, sk_C) and sends pk_C to the Adversary
- 2 The Adversary may repeatedly submit queries m_i to the Challenger
- 3 The Challenger answers a query with $\sigma_i = S(sk_C, m_i)$
- The Adversary tries to forge a signature σ_f for a message $m_f \neq_i m_i$, s.t. $V(pk_C, \sigma_f, m_f) = \top$

Dlog PKC 2021-04 20/32

Related: interactive proof of identity

Objective of a proof of ID scheme:

- Publish public identification data α
- lacktriangle When challenged, prove knowledge of a secret related to lpha

Example of a one-time scheme:

- II Let \mathcal{H} be a preimage-resistant hash function, \mathcal{R} a large set
- **The prover draws** $x \leftarrow \mathcal{R}$, computes and publishes $X = \mathcal{H}(x)$
- When challenged, reveals x

Many-time variant:

- Draw $x \leftarrow \mathcal{R}$, compute and publish $X = \mathcal{H}^N(x)$
- 2 When challenged, reveal $\mathcal{H}^{N-1}(x)$, reset $X = \mathcal{H}^{N-1}(x)$

Dlog PKC 2021-04 21/32

A discrete-log based PoID scheme

- **11** Let $\mathbb{G} = \langle g \rangle$ be a group with a hard DLP
- The prover draws $x \leftarrow \mathcal{R}$, computes and publishes $X = g^x$
- When challenged; draws r, sends $R = g^r$
- \blacksquare The verifier picks c and sends it
- The prover computes a = r + cx and sends it
- **1** The verifier checks that $RX^c = g^a$

This can be run many times, BUT *r*'s should be *uniformly* random and never repeat!

Dlog PKC 2021-04 22/32

From PoID to signature

Differences between PoID and signatures:

- PoIDs are interactive (in the verification), signatures are not
- Signatures also involve a message

One major observation:

- If the prover can guarantee that it doesn't control both R and c, interaction is unnecessary
- (Otherwise, nothing is proved)
- \Rightarrow Fiat-Shamir transformation: generate c from R with a hash function

Dlog PKC 2021-04 23/32

Schnorr signatures

To sign a message m with the key pair (sk, pk) $(x, X = g^x)$

- II Pick $r \leftarrow \mathcal{R}$ and compute $R = g^r$
- **2** Compute $c = \mathcal{H}(R, m)$
- Compute a = r + cx and output (c, a) as the signature of m To verify a signature:

 - 2 Check that $c = \mathcal{H}(\hat{R}, m)$

Important: *r* must (again) be *uniformly* random and not repeat! (Why?)

Dlog PKC 2021–04 24/32

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```

Figure: Not good for Schnorr signatures

Dlog PKC 2021–04 25/32

Where are we with dlog?

If $\mathbb{G} = \langle g \rangle$ is a prime-order group where the DLP is hard (on average \equiv in the worst case), then:

- Can do asymmetric key exchange
- Can do public-key signatures

For signatures we also need

- Good hash functions
- Good pseudorandom number generation (for "classical" signature algorithms)

Dlog PKC 2021-04 26/32

What if I don't trust my PRNG?

- Typical dlog-based signatures break easily if r is not random enough
 - Vulnerable to bad implementations or government backdoors
- But one can tweak them to generate r from the message and the private key using a VIL/VOL-PRF (either completely deterministically or not)
 - Example: RFC6979
- N.B. It is indeed fine for a signature algorithm to be deterministic (cf. also later RSA examples)
- ... But in the case of dlog-based schemes, determinism may help physical attacks

Dlog PKC 2021-04 27/32

Some comments on dlog attacks

When $\mathbb{G} \approx \mathbb{F}_p^{\times}$, the current dlog records are:

- ▶ $|p| \approx 795$ bits (Boudot et al., 2019), using a *Number Field Sieve* (NFS) algorithm
 - ► Took about 3100 core years
- ▶ $|p| \approx 1024$ bits for a *trapdoored* prime (Fried et al., 2017), using a *Special NFS* (SNFS) algorithm
 - Took about 385 core years

Note: it may be hard to decide if a prime is trapdoored

One nice (for an attacker) feature of (S)NFS:

 The largest part of the cost is a precomputation, then computing individual dlogs is very fast

Dlog PKC 2021-04 28/32

Some more comments on dlog: small subgroup attack

Consider a semi-static key exchange,

- ▶ Where one of g^a or g^b (say g^b) is fixed using $\langle g \rangle \subset \mathbb{F}_p^{\times}$ where \mathbb{F}_p^{\times} has many small subgroups
 - ▶ Then B must check that " \hat{g} " sent by A is in the correct group
 - Otherwise, if \hat{g}^b is in a small group of order N, a malicious A can learn $b \mod N$
 - ► ... Then b mod N', etc.

One way to easily prevent this: use p = 2q + 1, q a Sophie Germain prime

 \Rightarrow Only a small subgroup of order 2 to check for in \mathbb{F}_p^\times

Dlog PKC 2021-04 29/32

What about implementation, though?

- We need to compute g^x , for a large x (e.g. 256 bits)
- ► Cannot just do $g \times g \times g \times ... \times g \approx 2^{256}$ times!
- Notice that $g \times g = g^2$, $g^2 \times g^2 = g^4$, $g^4 \times g^4 = g^{16}$, etc.
- Also: $g \times g^2 = g^3$, $g^2 \times g^{16} = g^{18}$, etc.
- → "Square & multiply" algorithm

Dlog PKC 2021-04 30/32

Square & multiply

Square & multiply

```
Input x, g
Output g<sup>x</sup>
 h = 1
  2 While x \neq 0
             if (x\&1)
 3
                   h \leftarrow h \times g
 4
 5
     g \leftarrow g \times g
 6
        x \leftarrow x \gg 1
     Return h
```

 \Rightarrow Only $\log(x)$ iterations needed! (Problem here, runtime also depends on $\operatorname{wt}(x)$)

Dlog PKC 2021-04 31/32

Implementation: what else?

- We also need multiplication, addition in G
- If $\mathbb{G} \subseteq \mathbb{F}_p^{\times} \Rightarrow$ modular arithmetic
- Require big number multiplication, (integer) division, remainders, addition
- \Rightarrow split f as e.g. $f_0 + 2^{64}f_1 + 2^{128}f_2 + \dots$
- Can use dedicated arithmetic for "efficient" primes (e.g. efficient Barrett reduction)

Dlog PKC 2021-04 32/32