Introduction to cryptology (GBIN8U16)

Public-Key Cryptography: Discrete logarithm-based schemes

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2021-04

How to get a key

So far we assumed the presence of a shared secret between participants, but how do you get there?

Some possibilities

- Meet in person (impractical)
- Use secure message transmission (not so practical (but very nice!))
- Use asymmetric "public-key" schemes (quite practical) \&~ our focus now!

Public-key algorithms

Some major examples:

- Asymmetric encryption (one key to encrypt, another to decrypt), e.g. RSA (+ some randomized padding)
- Digital signature (one key to sign, another to verify), e.g. DSA
- Public-key key exchange, e.g. Diffie-Hellman

Note: RSA can be used to implement both a key-exchange and a signature

Group definitions

Finite cyclic group (multiplicative notation)

A finite group \mathbb{G} of order (or cardinality) N is cyclic if $\exists g \in \mathbb{G}$ s.t. $\forall x \in \mathbb{G}, \exists i \in \llbracket 0, N-1 \rrbracket$ s.t. $x=g^{i}$. Such an element g is called a generator (or primitive element) of the group.

Properties

- Any element h of \mathbb{G} generates a subgroup $\mathbb{H}:=\langle h\rangle$. The order $\operatorname{ord}(h)$ of h is defined as the order (or cardinality) of \mathbb{H}. If $\mathbb{H}=\mathbb{G}, h$ is a generator of the full group \mathbb{G}.
- A group may have several generators.
- (Lagrange Theorem) If \mathbb{H} is a subgroup of $\mathbb{G}, \# \mathbb{H} \mid \# \mathbb{G}$ (Corollary: if \#G is prime, all elements except 1 are primitive)

Group examples

An additive group:

- $(\mathbb{Z} / 512 \mathbb{Z},+), g=1, \operatorname{ord}(g)=512$

Any multiplicative group of a finite field (and more):

- $\mathbb{F}_{257}^{\times}, g=3, \operatorname{ord}(g)=256$
- $\left(\mathbb{F}_{2}[X] / X^{8}+X^{4}+X^{3}+X^{2}+1\right)^{\times}, g=X, \operatorname{ord}(g)=255$
- $(\mathbb{Z} / n \mathbb{Z})^{\times}$, of order $\varphi(n)(=n-1$ when n is prime $)$
- Cf. the extended Euclid algorithm... later!

Today's focus: Diffie-Hellman

A simple protocol:

- Let $\mathbb{G}=\langle g\rangle$ be a cyclic finite group with a generator g
- A picks $a \leftrightarrow \llbracket 0, \operatorname{ord}(g)-1 \rrbracket$, sends g^{a} to B
- B picks $b \leftrightarrow \llbracket\left[0, \operatorname{ord}(g)-1 \rrbracket\right.$, sends g^{b} to A
- A computes $\left(g^{b}\right)^{a}=g^{b a}=g^{a b}$, sets $k=\operatorname{KDF}\left(g^{a b}\right)$
- B computes $\left(g^{a}\right)^{b}=g^{a b}$, sets $k=\operatorname{KDF}\left(g^{a b}\right)$

With KDF some key derivation function (e.g. a \sim hash function)

Why this works?

Functionality

- A and B only need public information to perform the exchange
- They get the same k
\Rightarrow Public-key key exchange
Security: necessary conditions
- Given g, g^{a}, g^{b}, it must be hard to compute $g^{a b}$
- $k=\operatorname{KDF}\left(g^{a b}\right)$ must be "random-looking" when a, b are random
- (Related: there must be many possible values for k)

Security focus

A necessary condition: computing discrete logarithms in \mathbb{G} must be "hard"

Discrete logarithm

Let $\mathbb{G}=\langle g\rangle$ be a finite group of order N, the discrete logarithm in base g of $h=g^{a}, a \in \llbracket 0, N-1 \rrbracket$ is defined as a

How hard is the "discrete logarithm problem" (DLP) for various groups?

DLP hardness

Proposition

It is always possible to compute the discrete logarithm in a group of order N in time $O(\sqrt{N})$

So one must at least pick N s.t. $2^{\log (N) / 2}$ is large. But:

- ($\mathbb{Z} / n \mathbb{Z},+$): DLP always easy (logarithm \equiv division)
- \mathbb{F}_{q}^{\times}: usually hard, not maximally hard (needs much less work than \sqrt{N})
- $E\left(\mathbb{F}_{q}\right)$: usually maximally hard (needs about \sqrt{N})

A simple generic algorithm

Idea: use collisions to reveal the solution. One way to do this: baby-step/giant-step

- Let \mathbb{G} be of order $N, h=g^{a}$ for some $a \in \llbracket 0, N-1 \rrbracket$
- Let $r=\lceil\sqrt{N}\rceil$, then $a=r a_{1}-a_{0}$, with a_{0}, a_{1} less than r
- We have $h=g^{r a_{1}-a_{0}}$, so $h g^{a_{0}}=g^{r_{1}}$ \Rightarrow
1 Compute $L_{0}=\left[h g^{x}, x<r\right], L_{1}=\left[g^{r y}, y<r\right]$
2 Find i, j s.t. $L_{0}[i]=L_{1}[j]$
(3) Return $a=r j-i$

Baby-step/giant-step: Comments

- The baby-step/giant-step algorithm works with any group
- It has time and memory cost equal to $\sqrt{\operatorname{Ord(G)}} \Rightarrow$ generically optimal (up to the memory cost)!
- It can easily be parallelised
- It can easily be adapted when the logarithm is known to lie in a "small" interval
- Other collision-based algorithms exist with constant or small memory cost (such as Pollard's ρ (also parallelisable) or kangaroos)!
- Depending on \mathbb{G}, better algorithms may be available (we've seen some examples)

More on how to pick a group

If the order N of \mathbb{G} is not prime, \mathbb{G} has subgroups

- Let $N=p N^{\prime}$, then g^{p} generates a group of order N^{\prime}

Proposition (Pohlig-Hellman)

It is possible to solve the DLP in \mathbb{G} subgroup-by-subgroup
\Rightarrow For the DLP to be hard, \mathbb{G} must be of order N s.t. DLP is hard in a subgroup of order p, the largest prime factor of N (Idea: use a Chinese Remainder Theorem-like decomposition; no details)

Are we done? Not quite

- Hardness of the DLP cannot be "proven", but a reasonable assumption for some groups
- We may also sometime need g^{x} to be "random-looking" (ditto) But regardless, Diffie-Hellman as presented only protects againts passive adversaries
\Rightarrow Not very useful in practice

Diffie-Hellman with a man in the middle

- A sends g^{a} to B
- C intercepts the message, sends g^{c} to B
- B sends g^{b} to A
- C intercepts the message, sends g^{c} to A
- A and C share a key $k_{a}=\operatorname{KDF}\left(g^{\mathrm{ac}}\right)$
- B and C share a key $k_{b}=\operatorname{KDF}\left(g^{b c}\right)$
- Anytime A sends a message to B with key k_{a}, C decrypts and re-encrypts with k_{b} (and vice-versa)

One way to solve this: signatures

A wants to be sure it is talking to B

- Find B's public verification key for a signature algorithm
- Ask B to sign g^{b}
- Only accept it if the signature is valid

Works well, but A needs to know B's public key beforehand
\Rightarrow We again have a bootstrapping issue
So are we back to square one?

Public-key infrastructures can help

Public keys still help compared to private ones:

- Possibly long term (v. have to be changed after a while (although not a real limitation))
- Scales linearly w/ the number of participants (v. quadratically)
- Trusting only one key is enough, if it signs all the ones you need!

Example: TLS certificates

The simple picture:

- Web browsers are pre-loaded with "certificates" (\sim public keys) of certification authorities (CAs)
- CAs sign the certificates of websites using secure connections (possibly using intermediaries)
- When connecting to a website, check the entire chain of certificates
- If everything's fine, use the website's public key to authenticate the exchange

So how do we sign?

Signature possibilities

- Use a discrete logarithm based protocol
- Or RSA
- But in both cases, also need a hash function!

Signatures: what?

Objectives of a signature algorithm:

- Given (sk, pk) a key pair
- message $m+$ secret key sk \leadsto signature $s=S_{\text {sk }}(m)$
- message $m+$ signature $s+$ public key $\mathrm{pk} \leadsto$ verified message $\mathrm{V}_{\mathrm{pk}}(m, s)$
Informal security objectives
- Given pk, it should be hard to find sk
- Given pk, it should be hard to forge signatures
- (Variant: given access to a signing oracle $\mathbb{O}_{\text {(sk,pk) }}$, it should be hard to forge signatures)
- Formalised as Existential unforgeability under chosen-message attacks (EUF-CMA)

EUF-CMA for Public-Key signatures

EUF-CMA for (S, V): An adversary cannot forge a valid signature σ for a message m such that $\mathrm{V}\left(p k_{c}, \sigma, m\right)$ succeeds, when given (restricted) oracle access to $\mathrm{S}\left(\mathrm{sk}_{\mathrm{C}}, \cdot\right)$:
1 The Challenger chooses a pair $\left(p k_{C}, s k_{C}\right)$ and sends $p k_{C}$ to the Adversary
2 The Adversary may repeatedly submit queries m_{i} to the Challenger
3 The Challenger answers a query with $\sigma_{i}=\mathrm{S}\left(s k_{C}, m_{i}\right)$
4. The Adversary tries to forge a signature σ_{f} for a message $m_{f} \neq{ }_{i} m_{i}$, s.t. $\mathrm{V}\left(p k_{C}, \sigma_{f}, m_{f}\right)=\mathrm{T}$

Related: interactive proof of identity

Objective of a proof of ID scheme:

- Publish public identification data α
- When challenged, prove knowledge of a secret related to α

Example of a one-time scheme:
1 Let \mathcal{H} be a preimage-resistant hash function, \mathcal{R} a large set
2 The prover draws $x \leftrightarrow \mathcal{R}$, computes and publishes $X=\mathcal{H}(x)$
3 When challenged, reveals x
Many-time variant:
1 Draw $x \nVdash \mathcal{R}$, compute and publish $X=\mathcal{H}^{N}(x)$
2 When challenged, reveal $\mathcal{H}^{N-1}(x)$, reset $X=\mathcal{H}^{N-1}(x)$

A discrete-log based PoID scheme

1 Let $\mathbb{G}=\langle g\rangle$ be a group with a hard DLP
2 The prover draws $x \leftrightarrow \mathcal{R}$, computes and publishes $X=g^{x}$
3 When challenged; draws r, sends $R=g^{r}$
4 The verifier picks c and sends it
5 The prover computes $a=r+c x$ and sends it
6 The verifier checks that $R X^{c}=g^{a}$
This can be run many times, BUT r's should be uniformly random and never repeat!

From PoID to signature

Differences between PoID and signatures:

- PoIDs are interactive (in the verification), signatures are not
- Signatures also involve a message

One major observation:

- If the prover can guarantee that it doesn't control both R and c, interaction is unnecessary
- (Otherwise, nothing is proved)
\Rightarrow Fiat-Shamir transformation: generate c from R with a hash function

Schnorr signatures

To sign a message m with the key pair (sk, pk) $\left(x, X=g^{x}\right)$
1 Pick $r \nleftarrow \mathcal{R}$ and compute $R=g^{r}$
2 Compute $c=\mathcal{H}(R, m)$
3 Compute $a=r+c x$ and output (c, a) as the signature of m
To verify a signature:
1 Compute $\hat{R}=g^{a} / X^{c}=g^{a} / g^{c x}$
2 Check that $c=\mathcal{H}(\hat{R}, m)$
Important: r must (again) be uniformly random and not repeat! (Why?)

int getRandomNumber()

\{
return 4; // chosen by fair dice roll. // guaranteed to be random.
\}

Figure: Not good for Schnorr signatures

Where are we with dlog?

If $\mathbb{G}=\langle g\rangle$ is a prime-order group where the DLP is hard (on average \equiv in the worst case), then:

- Can do asymmetric key exchange
- Can do public-key signatures

For signatures we also need

- Good hash functions
- Good pseudorandom number generation (for "classical" signature algorithms)

What if I don't trust my PRNG?

- Typical dlog-based signatures break easily if r is not random enough
- Vulnerable to bad implementations or government backdoors
- But one can tweak them to generate r from the message and the private key using a VIL/VOL-PRF (either completely deterministically or not)
- Example: RFC6979
- N.B. It is indeed fine for a signature algorithm to be deterministic (cf. also later RSA examples)
- ... But in the case of dlog-based schemes, determinism may help physical attacks

Some comments on dlog attacks

When $\mathbb{G} \approx \mathbb{F}_{p}^{\times}$, the current dlog records are:

- $|p| \approx 795$ bits (Boudot et al., 2019), using a Number Field Sieve (NFS) algorithm
- Took about 3100 core years
- $|p| \approx 1024$ bits for a trapdoored prime (Fried et al., 2017), using a Special NFS (SNFS) algorithm
- Took about 385 core years

Note: it may be hard to decide if a prime is trapdoored
One nice (for an attacker) feature of (S)NFS:

- The largest part of the cost is a precomputation, then computing individual dlogs is very fast

Some more comments on dlog: small subgroup attack

Consider a semi-static key exchange,

- Where one of g^{a} or g^{b} (say g^{b}) is fixed
using $\langle g\rangle \subset \mathbb{F}_{p}^{\times}$where \mathbb{F}_{p}^{\times}has many small subgroups
- Then B must check that " \hat{g} " sent by A is in the correct group
- Otherwise, if \hat{g}^{b} is in a small group of order N, a malicious A can learn $b \bmod N$
-...Then $b \bmod N^{\prime}$, etc.
One way to easily prevent this: use $p=2 q+1, q$ a Sophie Germain prime
\Rightarrow Only a small subgroup of order 2 to check for in \mathbb{F}_{p}^{\times}

What about implementation, though?

- We need to compute g^{x}, for a large x (e.g. 256 bits)
- Cannot just do $g \times g \times g \times \ldots \times g \approx 2^{256}$ times!
- Notice that $g \times g=g^{2}, g^{2} \times g^{2}=g^{4}, g^{4} \times g^{4}=g^{16}$, etc.
- Also: $g \times g^{2}=g^{3}, g^{2} \times g^{16}=g^{18}$, etc.
\sim "Square \& multiply" algorithm

Square \& multiply

Square \& multiply

Input x, g
Output g^{x}
$1 h=1$
2 While $x \neq 0$
3 if ($x \& 1$)
$4 \quad h \leftarrow h \times g$
$5 \quad g \leftarrow g \times g$
6 $\quad x \leftrightarrow x \gg 1$
7 Return h
\Rightarrow Only $\log (x)$ iterations needed!
(Problem here, runtime also depends on wt (x))

Implementation: what else?

- We also need multiplication, addition in \mathbb{G}
- If $\mathbb{G} \subseteq \mathbb{F}_{p}^{\times} \Rightarrow$ modular arithmetic
- Require big number multiplication, (integer) division, remainders, addition
- \Rightarrow split f as e.g. $f_{0}+2^{64} f_{1}+2^{128} f_{2}+\ldots$
- Can use dedicated arithmetic for "efficient" primes (e.g. efficient Barrett reduction)

