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Bits as field elements

▸ Digital processing of information ↝ dealing with bits

▸ Error-correcting codes, crypto ↝ need analysis ↝ maths

▸ ⇒ bits (no structure) ↦ field elements (math object)

▸ “Natural” match: {0,1} ≅ F2 ≡ Z/2Z ≡ “(natural) integers
modulo 2”

▸ F2: two elements (0, 1), two operations (+, ×)



Finite fields, block ciphers 2021–02–10 4/43

What’s F2 like?

▸ Addition ≡ exclusive or (XOR (⊕))

▸ Multiplication ≡ logical and (∧)

▸ ⇒ “Boolean” arithmetic

▸ Fact 1: any Boolean function f ∶ {0,1}n → {0,1} can be
computed using only ⊕ and ∧

▸ Fact 2: ditto, g ∶ {0,1}n → {0,1}m

▸ Fact 3: ditto, using NAND (¬ ○ ∧)



Finite fields, block ciphers 2021–02–10 5/43

One bit is nice, but...

▸ We rather need bit strings {0,1}n than single bits

▸ Now two “natural” matches:

▸ Fn
2 (vectors over F2)
▸ Can add two vectors
▸ Cannot multiply “internally” (but there’s a dot/scalar product)

▸ Z/2nZ (natural integers modulo 2n)
▸ Can add, multiply
▸ Not all elements are invertible (e.g. 2) ⇒ only a ring

Exercise: How do you implement operations in F64
2 , Z/264Z in C?
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A third way

▸ Also possible: F2n : an extension field
▸ Addition “like in Fn

2”
▸ Plus an internal multiplication
▸ All elements (except zero) are invertible

▸ Not for today!
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Why are these useful?

▸ Allows to perform operations on inputs
▸ E.g. adding two messages together

▸ Vector spaces ⇒ linear algebra (matrices)
▸ Powerful tools to solve “easy” problems
▸ (Intuition: crypto shouldn’t be linear)

▸ Fields ⇒ polynomials
▸ With one or more variable
▸ ⇒ Can compute differentials
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Recall that...

▸ Cryptography: we want to hide stuff (e.g., messages to be
sent over an insecure channel)

▸ Symmetric: we only do that assuming a preexisting shared
secret

▸ A major question: when is the hiding “good enough”?
▸ “HELLO” ↦ “HULLO”: not great
▸ “HELLO” ↦ “ZNPQE”: maybe better
▸ “HELLO” ↦ “ZNPQE”; “HELLO” ↦ “ZNPQE”; “HELLO” ↦

“ZNPQE”...: (Okay, those same 5 letters at the start of your
messages probably always mean “hello”)
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The problem with deterministic encryption

Figure: XKCD #257
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So...

▸ Encryption MUST be non-deterministic

▸ Also (a bit harder to see): messages MUST *always* be
authenticated to prevent tampering if the adversary is active
(even if only “confidentiality” is a concern)

Now our main concerns:

▸ How do we formalise what we want to achieve?

▸ How do we actually build schemes that work?
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Block ciphers: for what?

Ultimate goal: symmetric encryption (and more!)

▸ plaintext + key ↦ ciphertextS

▸ ciphertext + key ↦ plaintext

▸ ciphertexts ↦ ???

With arbitrary plaintexts ∈ {0,1}∗

Block ciphers: do that one-to-one (for a fixed key) for plaintexts
∈ {0,1}n

▸ (Very) small example: 32 randomly shuffled cards = 5-bit
block cipher

▸ Typical block sizes = “what’s easy to implement”

▸ Mostly useless in isolation (e.g. they’re deterministic) but very
useful when plugged into suitable higher-level schemes
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Block ciphers as a figure

↝ on the board
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A main alternative: stream ciphers, still as a figure

↝ still on the board
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Block ciphers: “simple” binary mappings

Block cipher

A block cipher is a mapping E ∶ K ×M→M′ s.t. ∀k ∈ K, E(k , ⋅)
is invertible

In practice, most of the time:

▸ Keys K = {0,1}κ, with κ ∈ {///64, //80, ///96, 112, 128, 192, 256}
▸ Plaintexts/ciphertexts M =M′ = {0,1}n, with
n ∈ {64,128,256}

⇒ BCs are families of permutations over binary domains

▸ Exception: Format Preserving Encryption (FPE)
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What’s a good block cipher?

One that’s:
▸ “Efficient”

▸ Fast (e.g. a few cycles per byte on modern high-end CPUs)
▸ ∧/∨ Compact (small code, circuit size)
▸ ∧/∨ Easy to implement “securely” (e.g. to prevent

side-channel attacks)
▸ Etc.

▸ “Secure”
▸ Large security parameters (key, block size)
▸ ∧ No (known) dedicated attacks.
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What’s a secure block cipher?

What do you think?
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What’s a secure block cipher?

Expected behaviour:

▸ Given oracle access to E(k, ⋅), with a secret k ↞ K, it is
“hard” to find k

▸ (Same with oracle access to E±(k, ⋅) ∶= {E(k , ⋅),E−1(k , ⋅)})

▸ Given c = E(k,m), it is “hard” to find m (when k ’s unknown)

▸ Given m, it is “hard” to find c = E(k,m) (idem)

But that’s not enough!
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We need more

Define Ek ∶ xL∣∣xR ↦ xL∣∣E ′k(xR) for some E ′

▸ If E ′ verifies all props. from the previous slide, then so does E
▸ But E is obviously not so nice

⇒ need a better way to formulate expectations
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Ideal block ciphers

Ideal block cipher

Let Perm(M) be the set of the (#M)! permutations of M; an
ideal block cipher E ∶ K ×M→M is s.t. ∀k ∈ K,
E(k , ⋅)↞ Perm(M)

▸ “Maximally random”

▸ All keys yield truly independent permutations
▸ Quite costly to implement

▸ Say M = {0,1}32 ↝ 232! < (232)2
32

permutations
▸ So about 32 × 232 = 237 bits to describe one (ø key size)

⇒ Not very practical
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(S)PRP security

Most of the time, good enough if E is a “good” pseudo-random
permutation (PRP):

▸ An adversary has access to an oracle O
▸ In one world, O↞ Perm(M)
▸ In another, k ↞ K, O = E(k , ⋅)
▸ It is “hard” for the adversary to tell in which world s/he lives

▸ (“Strong/Super” variant: give oracle access to O±)

⇒ Stronger requirement than key recovery (is implied by it,
converse is not true)
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(S)PRP security: why it makes sense

It’s easy to distinguish the two worlds if:

▸ It’s easy to recover the key of E(k , ⋅) (try and see)

▸ It’s easy to predict what E(k ,m) will be (ditto)

▸ Ek ∶ xL∣∣xR ↦ xL∣∣E ′k(xR) (random permutations usually don’t
do that)

▸ E is F2-linear (say), or even “close to”

▸ Etc.

⇒ Don’t have to explicitly define all the “bad cases”

Plus:

▸ Can’t do better than a random permutation anyways

▸ If it looks like one, either it’s fine, or BCs are useless (←
“true” most of the time but not always)
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(S)PRP: it’s not everything

▸ Sometimes a PRP is not enough and one needs a
stronger/different model such as the ideal block cipher model

▸ For instance when the adversary has access to the key (↝
considering a uniform choice doesn’t make sense anymore)

▸ Example: when using block ciphers to build compression
functions (cf. the hash function lecture)
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Complexity issues

We still need to define what means “hard” ⇒ relevant metrics:

▸ Time (T) (“how much computation”)
▸ Memory (M) (“how much storage”)

▸ Memory type (sequential access (cheap tape), RAM (costly))

▸ Data (D) (“how many oracle queries”)
▸ Query type (to E , to E−1, adaptive or not, etc.)

▸ Success probability (p)
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Generic attack examples

Take E ∶ {0,1}κ × {0,1}n → {0,1}n

▸ Can find an unknown key with T = 2κ, M = O(κ), D = O(κ),
p = 1

▸ Can find an unknown key with T = 1, M = 0, D = 0, p = 2−κ

▸ In general, can find an unknown key with T = t, M = O(κ),
D = O(κ), p = t/2κ

We have “small” secrets ⇒ attacks always possible =
computational security
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A “single” measure

Define advantage functions associated w/ the security properties.
For instance:

AdvPRP

AdvPRPE (q, t) =

max
Aq,t

∣Pr[AO
q,t() = 1 ∶ O↞ Perm(M)]

−Pr[AO
q,t() = 1 ∶ O = E(k , ⋅), k ↞ K]∣

AO
q,t : An algorithm running in time ≤ t, making ≤ q queries to O
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“Good PRPs”

There is no formal definition of what a “good” PRP E is, but one
can expect in that case that:

AdvPRPE (q, t) ≈ t/2κ

(As long as q ≥ D ≈ ⌈κ/n⌉)
▸ Matched by a generic attack (i.e. key guessing)

▸ “Equality” if E is ideal

▸ Anything that’s (sensibly) better is a dedicated attack
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Parameters choice

Even a good PRP is useless if its keyspace is too small

▸ E.g. if κ = 32, t = 2κ = 232 is small

▸ But when do you know κ’s large enough?

▸ Look at the time/energy/infrastructure to count up to 2κ

Some examples

▸ ≈ 40 ↝ breakable w/ a small Raspberry Pi cluster
▸ ≈ 60 ↝ breakable w/ a large CPU/GPU cluster

▸ Already done (equivalently) several times in the academia:
▸ Ex. RSA-768 (Kleinjung et al., 2010), 2000 core-years (≡ 267

bit operations)
▸ Ex. DL-768 (Kleinjung et al., 2016), 5300 core-years
▸ Ex. SHA-1 collision (Stevens et al., and me!, 2017), 6500

core-years + 100 GPU-year (≡ 263 hash computations)

▸ ≈ 80 ↝ breakable w/ an ASIC cluster (cf. Bitcoin mining)
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Parameters choice (cont.)

Two caveats:

1 Careful about multiuser security
▸ If a single user changes keys a lot and breaking one is enough
▸ If targeting one random user among many
▸ A mix of the two (best!)
▸ ↝ have to account for that

2 Should we care about quantum computers??
▸ Would gain a

√⋅ factor
▸ “128-bit classical” ⇒ “64-bit quantum”
▸ (But a direct comparison is not so meaningful, actually)

In case of doubt, 256 bits?
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Parameters choice (cont.)

What about block size?

▸ Security not (directly) related to computational power

▸ Dictated by the volume encrypted with a single key (cf. next)

In the end, it’s always a cost/security tradeoff

(If you need a conventional BC with ridiculously large params,
SHACAL-2, w/ n = 256, κ = 512 is a good choice!)
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Block ciphers are not enough

What block ciphers do:

▸ One-to-one encryption of fixed-size messages

What do we want:

▸ One-to-many encryption of variable-size messages
▸ Why?

▸ Variable-size → kind of obvious?
▸ One-to-many → necessary for semantic security → cannot tell

if two ciphertexts are of the same message or not
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Enter modes of operation

▸ A mode of operation transforms a block cipher into a
symmetric encryption scheme

▸ ≈ E ↝ Enc ∶ {0,1}κ × {0,1}r × {0,1}∗ → {0,1}∗

▸ For all k ∈ {0,1}κ, r ∈ {0,1}r , Enc(k, r , ⋅) is invertible

▸ {0,1}r , r ≥ 0 is used to make encryption non-deterministic

▸ A mode is “good” if it gives “good encryption schemes” when
used with ”good BCs”

▸ So what’s a good encryption scheme?
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IND-CPA for Symmetric encryption

IND-CPA for Enc: An adversary cannot distinguish Enc(k ,m0)
from Enc(k ,m1) for an unknown key k and equal-length messages
m0, m1 when given oracle access to an Enc(k , ⋅) oracle:

1 The Challenger chooses a key k ↞ {0,1}κ

2 The Adversary may repeatedly submit queries xi to the
Challenger

3 The Challenger answers a query with Enc(k, ri , xi)
4 The Adversary now submits m0, m1 of equal length

5 The Challenger draws b↞ {0,1}, answers with Enc(k, r ′,mb)
6 The Adversary tries to guess b

▸ The choice of ri , r
′ is defined by the mode (made explicit

here, may be omitted)
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IND-CPA comments

▸ A random adversary succeeds w/ prob. 1/2 → the correct
success measure is (again) the advantage over this
▸ (Same as for PRP security)

▸ An adversary may always succeed w/ advantage 1 given
enough ressources
▸ Find the key spending time t ≤ 2κ and a few oracle queries

▸ What matters (again) is the “best possible” advantage in
function of the attack complexity
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First (non-) mode example: ECB

▸ ECB: just concatenate independent calls to E

Electronic Code Book mode

m0∣∣m1∣∣ . . . ↦ E(k,m0)∣∣E(k,m1)∣∣ . . .

▸ No security
▸ Exercise: give a simple attack on ECB for the IND-CPA

security notion w/ advantage 1, low complexity
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Second (actual) mode example: CBC

▸ Cipher Block Chaining: Chain blocks together (duh)

Cipher Block Chaining mode

r ×m0∣∣m1∣∣ . . . ↦ c0 ∶= E(k ,m0 ⊕ r)∣∣c1 ∶= E(k,m1 ⊕ c0)∣∣ . . .

▸ Output block i (ciphtertext) added (XORed) to input block
i + 1 (plaintext)

▸ For first (m0) block: use random IV r

▸ Okay security in theory ↝ okay security in practice if used
properly
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CBC IVs

CBC has bad IND-CPA security if the IVs are not random

▸ Consider an IND-CPA adversary who asks an oracle query
CBC-ENC(m), gets r , c = E(k ,m ⊕ r) (where E is the cipher
used in CBC-ENC)

▸ Assume the adversary knows that for the next IV r ′,
Pr[r ′ = x] is large

▸ Sends two challenges m0 = m ⊕ r ⊕ x , m1 = m0 ⊕ 1

▸ Gets cb = CBC-ENC(mb), b↞ {0,1}
▸ If cb = c, guess b = 0, else b = 1
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Generic CBC collision attack

Even with random IVs, CBC can be attacked
An observation:

▸ For a fixed k, E(k , ⋅) is a permutation so
E(k, x) = E(k , y)⇔ x = y

▸ In CBC, inputs to E are of the form x ⊕ y where x is a
message block and y an IV or a ciphertext block

▸ So E(k , x ⊕ y) = E(k , x ′ ⊕ y ′)⇔ x ⊕ y = x ′ ⊕ y ′

A consequence:

▸ If ci = E(k,mi ⊕ ci−1) = c ′j = E(k,m′
j ⊕ c ′j−1), then

mi ⊕ ci−1 = m′
j ⊕ c ′j−1, and then ci−1 ⊕ c ′j−1 = mi ⊕m′

j

▸ ↝ knowing identical ciphertext blocks reveals information
about the message blocks

▸ ⇒ breaks IND-CPA security

▸ Regardless of the security of E (i.e. even if it is ideal)!
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CBC collisions: how likely?

How soon does a collision happen?
▸ Assumption: the distribution of the (x ⊕ y) is ≈ uniform

▸ If y is an IV it has to be (close to) uniformly random,
otherwise we have an attack (two slides ago)

▸ If y = E(k, z) is a ciphertext block, ditto for y knowing z ,
otherwise we have an attack on E

▸ ⇒ A collision occurs w.h.p. after
√

#{0,1}n = 2n/2 blocks are
observed (with identical key k) ← The birthday bound

▸ (Slightly more precisely, w/ prob. ≈ q2/2n,q ≤ 2n/2 after q
blocks)
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Some CBC recap

A decent mode, but

▸ Must use uniformly random IVs

▸ Must change key much before encrypting 2n/2 blocks when
using an n-bit block cipher

▸ And this regardless of the key size κ

▸ Only “birthday bound” security: this is a common restriction
for modes of operation (cf. next slide)
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Another classical mode: CTR

Counter mode

m0∣∣m1∣∣ . . . ↦ E(k,s++)⊕m0∣∣E(k ,s++)⊕m1∣∣ . . .

▸ This uses a global state s for the counter, with C-like
semantics for s++

▸ Encrypts a public counter ↝ pseudo-random keystream ↝
(perfect) one-time-pad approximation (i.e. a stream cipher)

▸ Like CBC, must change key much before encrypting 2n/2

blocks when using an n-bit block cipher
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Security reduction

▸ For good modes such as CBC, CTR, one can prove statements
of the form: “if [the mode] is instantiated with a ‘good PRP’,
then this gives a ‘good IND-CPA encryption scheme’ ”

▸ This is an example of security reduction (here of the
encryption scheme to the block cipher)

▸ Quite common & useful in crypto ↝ modular designs are nice
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