Introduction to cryptology (GBIN8U16) Finite fields, block ciphers

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2021-02-10
\mathbb{F}_{2} primer

Symmetric cryptography

BC: First definitions

Symmetric encryption schemes

Finite fields, block ciphers

Bits as field elements

- Digital processing of information \leadsto dealing with bits
- Error-correcting codes, crypto \leadsto need analysis \leadsto maths
- \Rightarrow bits (no structure) \mapsto field elements (math object)
- "Natural" match: $\{0,1\} \cong \mathbb{F}_{2} \equiv \mathbb{Z} / 2 \mathbb{Z} \equiv$ "(natural) integers modulo 2"
- \mathbb{F}_{2} : two elements $(0,1)$, two operations $(+, \times)$

What's \mathbb{F}_{2} like?

- Addition \equiv exclusive or $(\mathrm{XOR}(\oplus))$
- Multiplication \equiv logical and (\wedge)
- \Rightarrow "Boolean" arithmetic
- Fact 1: any Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be computed using only \oplus and \wedge
- Fact 2: ditto, $g:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
- Fact 3: ditto, using NAND ($\neg \circ \wedge)$

One bit is nice, but...

- We rather need bit strings $\{0,1\}^{n}$ than single bits
- Now two "natural" matches:
- \mathbb{F}_{2}^{n} (vectors over \mathbb{F}_{2})
- Can add two vectors
- Cannot multiply "internally" (but there's a dot/scalar product)
- $\mathbb{Z} / 2^{n} \mathbb{Z}$ (natural integers modulo 2^{n})
- Can add, multiply
- Not all elements are invertible (e.g. 2) \Rightarrow only a ring

Exercise: How do you implement operations in $\mathbb{F}_{2}^{64}, \mathbb{Z} / 2^{64} \mathbb{Z}$ in C ?

A third way

- Also possible: $\mathbb{F}_{2^{n}}$: an extension field
- Addition "like in $\mathbb{F}_{2}^{n "}$
- Plus an internal multiplication
- All elements (except zero) are invertible
- Not for today!

Why are these useful?

- Allows to perform operations on inputs
- E.g. adding two messages together
- Vector spaces \Rightarrow linear algebra (matrices)
- Powerful tools to solve "easy" problems
- (Intuition: crypto shouldn't be linear)
- Fields \Rightarrow polynomials
- With one or more variable
- \Rightarrow Can compute differentials

Symmetric cryptography

BC: First definitions

Symmetric encryption schemes

Finite fields, block ciphers

Recall that...

- Cryptography: we want to hide stuff (e.g., messages to be sent over an insecure channel)
- Symmetric: we only do that assuming a preexisting shared secret
- A major question: when is the hiding "good enough"?
- "HELLO" \mapsto "HULLO": not great
- "HELLO" \rightarrow "ZNPQE": maybe better
- "HELLO" \mapsto "ZNPQE"; "HELLO" \mapsto "ZNPQE"; "HELLO" \rightarrow "ZNPQE" ...: (Okay, those same 5 letters at the start of your messages probably always mean "hello")

The problem with deterministic encryption

Figure: XKCD \#257

- Encryption MUST be non-deterministic
- Also (a bit harder to see): messages MUST *always* be authenticated to prevent tampering if the adversary is active (even if only "confidentiality" is a concern)

Now our main concerns:

- How do we formalise what we want to achieve?
- How do we actually build schemes that work?

\mathbb{F}_{2} primer
 Symmetric cryptography

BC: First definitions

Symmetric encryption schemes

Finite fields, block ciphers

Block ciphers: for what?

Ultimate goal: symmetric encryption (and more!)

- plaintext + key \mapsto ciphertextS
- ciphertext + key \mapsto plaintext
- ciphertexts \mapsto ???

With arbitrary plaintexts $\in\{0,1\}^{*}$
Block ciphers: do that one-to-one (for a fixed key) for plaintexts $\epsilon\{0,1\}^{n}$

- (Very) small example: 32 randomly shuffled cards $=5$-bit block cipher
- Typical block sizes = "what's easy to implement"
- Mostly useless in isolation (e.g. they're deterministic) but very useful when plugged into suitable higher-level schemes

Block ciphers as a figure

\leadsto on the board

Finite fields, block ciphers

A main alternative: stream ciphers, still as a figure
\leadsto still on the board

Block ciphers: "simple" binary mappings

Block cipher

A block cipher is a mapping $\mathcal{E}: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{M}^{\prime}$ s.t. $\forall k \in \mathcal{K}, \mathcal{E}(k, \cdot)$ is invertible

In practice, most of the time:

- Keys $\mathcal{K}=\{0,1\}^{\kappa}$, with $\kappa \in\{\$ \not 4, \$ \varnothing, 96,112,128,192,256\}$
- Plaintexts/ciphertexts $\mathcal{M}=\mathcal{M}^{\prime}=\{0,1\}^{n}$, with $n \in\{64,128,256\}$
\Rightarrow BCs are families of permutations over binary domains
- Exception: Format Preserving Encryption (FPE)

What's a good block cipher?

One that's:

- "Efficient"
- Fast (e.g. a few cycles per byte on modern high-end CPUs)
- \wedge / \vee Compact (small code, circuit size)
- \wedge / \vee Easy to implement "securely" (e.g. to prevent side-channel attacks)
- Etc.
- "Secure"
- Large security parameters (key, block size)
- ^ No (known) dedicated attacks.

What do you think?

Finite fields, block ciphers

What's a secure block cipher?

Expected behaviour:

- Given oracle access to $\mathcal{E}(k, \cdot)$, with a secret $k \nleftarrow \mathcal{K}$, it is "hard" to find k
- (Same with oracle access to $\left.\mathcal{E}^{ \pm}(k, \cdot):=\left\{\mathcal{E}(k, \cdot), \mathcal{E}^{-1}(k, \cdot)\right\}\right)$
- Given $c=\mathcal{E}(k, m)$, it is "hard" to find m (when k 's unknown)
- Given m, it is "hard" to find $c=\mathcal{E}(k, m)$ (idem)

But that's not enough!

We need more

Define $\mathcal{E}_{k}: x_{L}\left\|x_{R} \mapsto x_{L}\right\| \mathcal{E}_{k}^{\prime}\left(x_{R}\right)$ for some \mathcal{E}^{\prime}

- If \mathcal{E}^{\prime} verifies all props. from the previous slide, then so does \mathcal{E}
- But \mathcal{E} is obviously not so nice
\Rightarrow need a better way to formulate expectations

Ideal block ciphers

Ideal block cipher

Let $\operatorname{Perm}(\mathcal{M})$ be the set of the $(\# \mathcal{M})$! permutations of \mathcal{M}; an ideal block cipher $\mathcal{E}: \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{M}$ is s.t. $\forall k \in \mathcal{K}$, $\mathcal{E}(k, \cdot) \leftrightarrow \operatorname{Perm}(\mathcal{M})$

- "Maximally random"
- All keys yield truly independent permutations
- Quite costly to implement
- Say $\mathcal{M}=\{0,1\}^{32} \leadsto 2^{32}$! $<\left(2^{32}\right)^{2^{32}}$ permutations
- So about $32 \times 2^{32}=2^{37}$ bits to describe one (em key size)
\Rightarrow Not very practical

(S)PRP security

Most of the time, good enough if \mathcal{E} is a "good" pseudo-random permutation (PRP):

- An adversary has access to an oracle \mathbb{O}
- In one world, $\mathbb{O} \longleftrightarrow \operatorname{Perm}(\mathcal{M})$
- In another, $k \leftrightarrow \mathcal{K}, \mathbb{O}=\mathcal{E}(k, \cdot)$
- It is "hard" for the adversary to tell in which world $s /$ he lives
- ("Strong/Super" variant: give oracle access to $\mathbb{O}^{ \pm}$)
\Rightarrow Stronger requirement than key recovery (is implied by it, converse is not true)

(S)PRP security: why it makes sense

It's easy to distinguish the two worlds if:

- It's easy to recover the key of $\mathcal{E}(k, \cdot)$ (try and see)
- It's easy to predict what $\mathcal{E}(k, m)$ will be (ditto)
- $\mathcal{E}_{k}: x_{L}\left\|x_{R} \mapsto x_{L}\right\| \mathcal{E}_{k}^{\prime}\left(x_{R}\right)$ (random permutations usually don't do that)
- \mathcal{E} is \mathbb{F}_{2}-linear (say), or even "close to"
- Etc.
\Rightarrow Don't have to explicitly define all the "bad cases"
Plus:
- Can't do better than a random permutation anyways
- If it looks like one, either it's fine, or BCs are useless (\leftarrow "true" most of the time but not always)

(S)PRP: it's not everything

- Sometimes a PRP is not enough and one needs a stronger/different model such as the ideal block cipher model
- For instance when the adversary has access to the key $(\leadsto$ considering a uniform choice doesn't make sense anymore)
- Example: when using block ciphers to build compression functions (cf. the hash function lecture)

Complexity issues

We still need to define what means "hard" \Rightarrow relevant metrics:

- Time (T) ("how much computation")
- Memory (M) ("how much storage")
- Memory type (sequential access (cheap tape), RAM (costly))
- Data (D) ("how many oracle queries")
- Query type (to \mathcal{E}, to \mathcal{E}^{-1}, adaptive or not, etc.)
- Success probability (p)

Generic attack examples

Take $\mathcal{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$

- Can find an unknown key with $T=2^{\kappa}, M=O(\kappa), D=O(\kappa)$, $p=1$
- Can find an unknown key with $T=1, M=0, D=0, p=2^{-\kappa}$
- In general, can find an unknown key with $T=t, M=\mathrm{O}(\kappa)$, $D=\mathrm{O}(\kappa), p=t / 2^{\kappa}$

We have "small" secrets \Rightarrow attacks always possible $=$ computational security

A "single" measure

Define advantage functions associated $\mathrm{w} /$ the security properties.
For instance:

Adv ${ }^{\text {PRP }}$

$\operatorname{Adv}_{\mathcal{E}}^{\mathrm{PRP}}(q, t)=$

$$
\begin{aligned}
& \max _{A_{q, t}} \mid \operatorname{Pr}\left[A_{q, t}^{\mathbb{O}}()=1: \mathbb{O} \leftrightarrow \operatorname{Perm}(\mathcal{M})\right] \\
& -\operatorname{Pr}\left[A_{q, t}^{\mathbb{O}}()=1: \mathbb{O}=\mathcal{E}(k, \cdot), k \leftarrow \mathcal{K}\right] \mid
\end{aligned}
$$

$A_{q, t}^{\mathbb{O}}$: An algorithm running in time $\leq t$, making $\leq q$ queries to \mathbb{O}

"Good PRPs"

There is no formal definition of what a "good" PRP \mathcal{E} is, but one can expect in that case that:

$$
\operatorname{Adv}_{\mathcal{E}}^{\mathrm{PRP}}(q, t) \approx t / 2^{\kappa}
$$

(As long as $q \geq D \approx\lceil\kappa / n\rceil$)

- Matched by a generic attack (i.e. key guessing)
- "Equality" if \mathcal{E} is ideal
- Anything that's (sensibly) better is a dedicated attack

Parameters choice

Even a good PRP is useless if its keyspace is too small

- E.g. if $\kappa=32, t=2^{\kappa}=2^{32}$ is small
- But when do you know κ 's large enough?
- Look at the time/energy/infrastructure to count up to 2^{κ}

Some examples

- $\approx 40 \leadsto$ breakable w/ a small Raspberry Pi cluster
- $\approx 60 \leadsto$ breakable w/ a large CPU/GPU cluster
- Already done (equivalently) several times in the academia:
- Ex. RSA-768 (Kleinjung et al., 2010), 2000 core-years ($\equiv 2^{67}$ bit operations)
- Ex. DL-768 (Kleinjung et al., 2016), 5300 core-years
- Ex. SHA-1 collision (Stevens et al., and me!, 2017), 6500 core-years +100 GPU-year ($\equiv 2^{63}$ hash computations)
- $\approx 80 \leadsto$ breakable w/ an ASIC cluster (cf. Bitcoin mining)

Parameters choice (cont.)

Two caveats:
1 Careful about multiuser security

- If a single user changes keys a lot and breaking one is enough
- If targeting one random user among many
- A mix of the two (best!)
- \sim have to account for that

2 Should we care about quantum computers??

- Would gain a $\sqrt{ }$ factor
- "128-bit classical" \Rightarrow " 64 -bit quantum"
- (But a direct comparison is not so meaningful, actually)

In case of doubt, 256 bits?

Parameters choice (cont.)

What about block size?

- Security not (directly) related to computational power
- Dictated by the volume encrypted with a single key (cf. next)

In the end, it's always a cost/security tradeoff
(If you need a conventional BC with ridiculously large params, SHACAL-2, w/ $n=256, \kappa=512$ is a good choice!)

Symmetric cryptography

BC: First definitions

Symmetric encryption schemes

Finite fields, block ciphers

Block ciphers are not enough

What block ciphers do:

- One-to-one encryption of fixed-size messages

What do we want:

- One-to-many encryption of variable-size messages
- Why?
- Variable-size \rightarrow kind of obvious?
- One-to-many \rightarrow necessary for semantic security \rightarrow cannot tell if two ciphertexts are of the same message or not

Enter modes of operation

- A mode of operation transforms a block cipher into a symmetric encryption scheme
- $\approx \mathcal{E} \leadsto$ Enc: $\{0,1\}^{\kappa} \times\{0,1\}^{r} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- For all $k \in\{0,1\}^{\kappa}, r \in\{0,1\}^{r}, \operatorname{Enc}(k, r, \cdot)$ is invertible
- $\{0,1\}^{r}, r \geq 0$ is used to make encryption non-deterministic
- A mode is "good" if it gives "good encryption schemes" when used with "good BCs"
- So what's a good encryption scheme?

IND-CPA for Symmetric encryption

IND-CPA for Enc: An adversary cannot distinguish $\operatorname{Enc}\left(k, m_{0}\right)$ from $\operatorname{Enc}\left(k, m_{1}\right)$ for an unknown key k and equal-length messages m_{0}, m_{1} when given oracle access to an $\operatorname{Enc}(k, \cdot)$ oracle:
1 The Challenger chooses a key $k \leftrightarrow\{0,1\}^{\kappa}$
2 The Adversary may repeatedly submit queries x_{i} to the Challenger
3 The Challenger answers a query with $\operatorname{Enc}\left(k, r_{i}, x_{i}\right)$
4 The Adversary now submits m_{0}, m_{1} of equal length
5 The Challenger draws $b \longleftarrow\{0,1\}$, answers with $\operatorname{Enc}\left(k, r^{\prime}, m_{b}\right)$
6 The Adversary tries to guess b

- The choice of r_{i}, r^{\prime} is defined by the mode (made explicit here, may be omitted)

IND-CPA comments

- A random adversary succeeds $\mathrm{w} / \mathrm{prob} .1 / 2 \rightarrow$ the correct success measure is (again) the advantage over this
- (Same as for PRP security)
- An adversary may always succeed w/ advantage 1 given enough ressources
- Find the key spending time $t \leq 2^{\kappa}$ and a few oracle queries
- What matters (again) is the "best possible" advantage in function of the attack complexity

First (non-) mode example: ECB

- ECB: just concatenate independent calls to \mathcal{E}

Electronic Code Book mode

 $m_{0}\left\|m_{1}\right\| \ldots \mapsto \mathcal{E}\left(k, m_{0}\right)\left\|\mathcal{E}\left(k, m_{1}\right)\right\| \ldots$- No security
- Exercise: give a simple attack on ECB for the IND-CPA security notion $\mathrm{w} /$ advantage 1 , low complexity

Second (actual) mode example: CBC

- Cipher Block Chaining: Chain blocks together (duh)

Cipher Block Chaining mode

$r \times m_{0}\left\|m_{1}\right\| \ldots \mapsto c_{0}:=\mathcal{E}\left(k, m_{0} \oplus r\right)\left\|c 1:=\mathcal{E}\left(k, m_{1} \oplus c_{0}\right)\right\| \ldots$

- Output block i (ciphtertext) added (XORed) to input block $i+1$ (plaintext)
- For first $\left(m_{0}\right)$ block: use random IV r
- Okay security in theory \leadsto okay security in practice if used properly

CBC IVs

CBC has bad IND-CPA security if the IVs are not random

- Consider an IND-CPA adversary who asks an oracle query CBC-ENC (m), gets $r, c=\mathcal{E}(k, m \oplus r)$ (where \mathcal{E} is the cipher used in CBC-ENC)
- Assume the adversary knows that for the next IV r^{\prime}, $\operatorname{Pr}\left[r^{\prime}=x\right]$ is large
- Sends two challenges $m_{0}=m \oplus r \oplus x, m_{1}=m_{0} \oplus 1$
- Gets $c_{b}=\operatorname{CBC}-\operatorname{ENC}\left(m_{b}\right), b \leftarrow\{0,1\}$
- If $c_{b}=c$, guess $b=0$, else $b=1$

Generic CBC collision attack

Even with random IVs, CBC can be attacked An observation:

- For a fixed $k, \mathcal{E}(k, \cdot)$ is a permutation so $\mathcal{E}(k, x)=\mathcal{E}(k, y) \Leftrightarrow x=y$
- In CBC, inputs to \mathcal{E} are of the form $x \oplus y$ where x is a message block and y an IV or a ciphertext block
- So $\mathcal{E}(k, x \oplus y)=\mathcal{E}\left(k, x^{\prime} \oplus y^{\prime}\right) \Leftrightarrow x \oplus y=x^{\prime} \oplus y^{\prime}$

A consequence:

- If $c_{i}=\mathcal{E}\left(k, m_{i} \oplus c_{i-1}\right)=c_{j}^{\prime}=\mathcal{E}\left(k, m_{j}^{\prime} \oplus c_{j-1}^{\prime}\right)$, then $m_{i} \oplus c_{i-1}=m_{j}^{\prime} \oplus c_{j-1}^{\prime}$, and then $c_{i-1} \oplus c_{j-1}^{\prime}=m_{i} \oplus m_{j}^{\prime}$
- \leadsto knowing identical ciphertext blocks reveals information about the message blocks
- \Rightarrow breaks IND-CPA security
- Regardless of the security of \mathcal{E} (i.e. even if it is ideal)!

CBC collisions: how likely?

How soon does a collision happen?

- Assumption: the distribution of the $(x \oplus y)$ is \approx uniform
- If y is an IV it has to be (close to) uniformly random, otherwise we have an attack (two slides ago)
- If $y=\mathcal{E}(k, z)$ is a ciphertext block, ditto for y knowing z, otherwise we have an attack on \mathcal{E}
$\Rightarrow A$ A collision occurs w.h.p. after $\sqrt{\#\{0,1\}^{n}}=2^{n / 2}$ blocks are observed (with identical key k) \leftarrow The birthday bound
- (Slightly more precisely, w/ prob. $\approx q^{2} / 2^{n}, q \leq 2^{n / 2}$ after q blocks)

Some CBC recap

A decent mode, but

- Must use uniformly random IVs
- Must change key much before encrypting $2^{n / 2}$ blocks when using an n-bit block cipher
- And this regardless of the key size κ
- Only "birthday bound" security: this is a common restriction for modes of operation (cf. next slide)

Another classical mode: CTR

Counter mode

$$
m_{0}\left\|m_{1}\right\| \ldots \mapsto \mathcal{E}\left(k, s^{+++}\right) \oplus m_{0}\left\|\mathcal{E}\left(k, s^{++}\right) \oplus m_{1}\right\| \ldots
$$

- This uses a global state s for the counter, with C-like semantics for s++
- Encrypts a public counter \leadsto pseudo-random keystream \leadsto (perfect) one-time-pad approximation (i.e. a stream cipher)
- Like CBC, must change key much before encrypting $2^{n / 2}$ blocks when using an n-bit block cipher

Security reduction

- For good modes such as CBC, CTR, one can prove statements of the form: "if [the mode] is instantiated with a 'good PRP', then this gives a 'good IND-CPA encryption scheme' "
- This is an example of security reduction (here of the encryption scheme to the block cipher)
- Quite common \& useful in crypto \leadsto modular designs are nice

