Introduction to cryptology (GBIN8U16)

>
Finite fields, block ciphers

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-1jk.imag.fr/membres/Pierre.Karpman/tea.html

2021-02-10

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

IF> primer

Finite fields, block ciphers e OIS

Bits as field elements

» Digital processing of information ~ dealing with bits
» Error-correcting codes, crypto ~ need analysis ~ maths

» = bits (no structure) ~ field elements (math object)

> “Natural” match: {0,1} 2 F, = Z/2Z = “(natural) integers
modulo 2"

> Fa: two elements (0, 1), two operations (+, x)

Finite fields, block ciphers =S Gy

What's [, like?

> Addition = exclusive or (XOR (&))
> Multiplication = logical and (A)

» = “Boolean” arithmetic

» Fact 1: any Boolean function f:{0,1}" - {0,1} can be
computed using only & and A

> Fact 2: ditto, g:{0,1}" - {0,1}"
> Fact 3: ditto, using NAND (-0 A)

Finite fields, block ciphers =R A

One bit is nice, but...

» We rather need bit strings {0,1}" than single bits

» Now two ‘“natural” matches:

> FJ (vectors over [F)

» Can add two vectors
» Cannot multiply “internally” (but there's a dot/scalar product)

» Z/2"7Z (natural integers modulo 2")

> Can add, multiply
> Not all elements are invertible (e.g. 2) = only a ring

Exercise: How do you implement operations in F$*, 7Z/2%47 in C?

Finite fields, block ciphers A= GG

A third way

» Also possible: Fon: an extension field
> Addition “like in F3"
> Plus an internal multiplication
> All elements (except zero) are invertible

» Not for today!

Finite fields, block ciphers 2021-02-10 /43

Why are these useful?

» Allows to perform operations on inputs
» E.g. adding two messages together

> Vector spaces = linear algebra (matrices)
> Powerful tools to solve “easy” problems
> (Intuition: crypto shouldn't be linear)

» Fields = polynomials

> With one or more variable
» = Can compute differentials

Finite fields, block ciphers =0 03

Symmetric cryptography

Finite fields, block ciphers 2021-02-10 g /43

Recall that...

» Cryptography: we want to hide stuff (e.g., messages to be
sent over an insecure channel)

» Symmetric: we only do that assuming a preexisting shared
secret

» A major question: when is the hiding “good enough”?
» "HELLO" ~ "HULLQO": not great
» “"HELLO" ~ “ZNPQE": maybe better
> “HELLO" — “ZNPQE"; "HELLO" » “ZNPQE"; “"HELLO" ~
“ZNPQE"...: (Okay, those same 5 letters at the start of your
messages probably always mean “hello”)

Finite fields, block ciphers 2021-02-10 9/43

The problem with deterministic encryption

ALAIH, DONEHLINY,
DONEHLINL -~ ALATH,
ALAH, DONEHLII,
DONEHLINI, - DONEHLINI,
ALAH, ALAIH,
DGNEHLWI ALAH,
DONEHLINI DONEHLINI,
DGNEHLIM

ﬁ

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATR STREAM,
WE SEND IT THROUGH OUR
NAVATO CODE TALKER-

... IS HE JUST USING
INAVATD WORDS FOR
"ZERG AND "ONE™?

WHOA, HEY, KEEP
YOUR WCE LOWN!

&L

Figure: XKCD #257

Finite fields, block ciphers

2021-02-10

10/43

So...

» Encryption MUST be non-deterministic
> Also (a bit harder to see): messages MUST *always* be
authenticated to prevent tampering if the adversary is active
(even if only “confidentiality” is a concern)
Now our main concerns:
» How do we formalise what we want to achieve?

» How do we actually build schemes that work?

Finite fields, block ciphers 2021-02-10 171 /43

BC: First definitions

Finite fields, block ciphers 20 119)1)

Block ciphers: for what?

Ultimate goal: symmetric encryption (and more!)
» plaintext + key — ciphertextS
» ciphertext + key — plaintext
» ciphertexts — 777

With arbitrary plaintexts € {0,1}*

Block ciphers: do that one-to-one (for a fixed key) for plaintexts
€{0,1}"
> (Very) small example: 32 randomly shuffled cards = 5-bit
block cipher
» Typical block sizes = “what’s easy to implement”

> Mostly useless in isolation (e.g. they're deterministic) but very
useful when plugged into suitable higher-level schemes

Finite fields, block ciphers AP0 g0

Block ciphers as a figure

~ on the board

Finite fields, block ciphers 2021-02-10 14/43

A main alternative: stream ciphers, still as a figure

~r still on the board

Finite fields, block ciphers 2021-02-10 15 /43

Block ciphers: “simple” binary mappings

Block cipher

A block cipher is a mapping £: K x M > M’ s.t. Vke K, E(k,-)
is invertible

In practice, most of the time:

- Keys K = {0,1}", with x < {64, 80, 06, 112, 128, 192, 256}
> Plaintexts/ciphertexts M = M’ = {0,1}", with
n e {64,128,256}

= BCs are families of permutations over binary domains

» Exception: Format Preserving Encryption (FPE)

Finite fields, block ciphers 2021-02-10 16/43

What's a good block cipher?

One that's:
» “Efficient”
> Fast (e.g. a few cycles per byte on modern high-end CPUs)
» A/v Compact (small code, circuit size)
» A/v Easy to implement “securely” (e.g. to prevent
side-channel attacks)
> Etc.

» “Secure”

> Large security parameters (key, block size)
> A No (known) dedicated attacks.

Finite fields, block ciphers 2021-02-10 17/43

What's a secure block cipher?

What do you think?

Finite fields, block ciphers 2021-02-10 18/43

What's a secure block cipher?

Expected behaviour:

> Given oracle access to E(k,-), with a secret k « I, it is
“hard” to find k

» (Same with oracle access to £%(k,-) := {E(k,-),E7 (k,-)})
> Given ¢ = E(k, m), it is “hard” to find m (when k's unknown)
> Given m, it is “hard” to find ¢ = E(k, m) (idem)

But that's not enough!

Finite fields, block ciphers AP0 qiG/03

We need more

Define gk : XLHXR = X[_”g;((XR) for some &’
> If & verifies all props. from the previous slide, then so does &
» But £ is obviously not so nice

= need a better way to formulate expectations

Finite fields, block ciphers 2021-02-10 19/43

|deal block ciphers

Ideal block cipher

Let Perm(,M) be the set of the (#M)! permutations of M; an
ideal block cipher £ : K x M - M iss.t. VkeK,
E(k,-) « Perm(M)

> “Maximally random”
» All keys yield truly independent permutations
» Quite costly to implement

32
> Say M ={0,1}32 ~ 2321 < (232)>" permutations
> So about 32 x 232 = 237 pjts to describe one («~ key size)

= Not very practical

Finite fields, block ciphers 2021-02-10 20 /43

(S)PRP security

Most of the time, good enough if £ is a “good” pseudo-random
permutation (PRP):

» An adversary has access to an oracle O

> In one world, O « Perm(M)

> In another, k « IC, O = E(k,-)

> It is "hard” for the adversary to tell in which world s/he lives
> (“Strong/Super” variant: give oracle access to O%)

= Stronger requirement than key recovery (is implied by it,
converse is not true)

Finite fields, block ciphers 2021-02-10 21 /43

(S)PRP security: why it makes sense

It's easy to distinguish the two worlds if:
> It's easy to recover the key of £(k,-) (try and see)
> It's easy to predict what £(k, m) will be (ditto)
> Ex xi|lxg = x|| €} (xr) (random permutations usually don't
do that)
» & is Fo-linear (say), or even “close to"
» Etc.

= Don't have to explicitly define all the “bad cases”

Plus:
» Can't do better than a random permutation anyways

> If it looks like one, either it's fine, or BCs are useless (<
“true” most of the time but not always)

Finite fields, block ciphers APZ=EE0 - G0

(S)PRP: it's not everything

» Sometimes a PRP is not enough and one needs a
stronger/different model such as the ideal block cipher model

> For instance when the adversary has access to the key (~
considering a uniform choice doesn't make sense anymore)

» Example: when using block ciphers to build compression
functions (cf. the hash function lecture)

Finite fields, block ciphers APZ=EE0 - G0

Complexity issues

We still need to define what means “hard” = relevant metrics:

> Time (T) (“how much computation”)
> Memory (M) (“how much storage”)
> Memory type (sequential access (cheap tape), RAM (costly))
» Data (D) (“how many oracle queries”)
> Query type (to &, to &Y adaptive or not, etc.)
» Success probability (p)

Finite fields, block ciphers 2021-02-10 24/43

Generic attack examples

Take £:{0,1}" x{0,1}" - {0,1}"
» Can find an unknown key with T =2, M =0(k), D = O(k),
p=1
» Can find an unknown key with T=1, M=0, D=0, p=27F

> In general, can find an unknown key with T =t, M = O(k),
D=0(k), p=t/2~

We have “small” secrets = attacks always possible =
computational security

Finite fields, block ciphers 202102710 25 /43

A “single” measure

Define advantage functions associated w/ the security properties.
For instance:

AdVPRP
Adv:R®(g,t) =

rﬂgid Pr[A(g),t() =1:0 « Perm(M)]

—Pr[A2,()=1:0=E(k,"), k « K]|

A(S),t: An algorithm running in time < t, making < g queries to O

Finite fields, block ciphers 2021-02-10 26 /43

“Good PRPs"

There is no formal definition of what a “good” PRP & is, but one
can expect in that case that:

AdvERP (g, t) ~ t/2"

(As long as g > D ~ [k/n])
» Matched by a generic attack (i.e. key guessing)
» “Equality” if £ is ideal
> Anything that's (sensibly) better is a dedicated attack

Finite fields, block ciphers 2021-02-10 27/43

Parameters choice

Even a good PRP is useless if its keyspace is too small

- E.g. if k=32, t=2%=2% s small

» But when do you know «'s large enough?

> Look at the time/energy/infrastructure to count up to 2~
Some examples

» ~ 40 ~ breakable w/ a small Raspberry Pi cluster

> ~ 60 ~ breakable w/ a large CPU/GPU cluster

> Already done (equivalently) several times in the academia:

> Ex. RSA-768 (Kleinjung et al., 2010), 2000 core-years (= 2°7
bit operations)

» Ex. DL-768 (Kleinjung et al., 2016), 5300 core-years

» Ex. SHA-1 collision (Stevens et al., and me!, 2017), 6500
core-years + 100 GPU-year (= 2% hash computations)

» ~ 80 ~ breakable w/ an ASIC cluster (cf. Bitcoin mining)

Finite fields, block ciphers 2021-02-10 28 /43

Parameters choice (cont.)

Two caveats:

Careful about multiuser security
> If a single user changes keys a lot and breaking one is enough
> If targeting one random user among many
> A mix of the two (best!)
> ~ have to account for that

Should we care about quantum computers??
* Would gain a /- factor
> “128-bit classical” = “64-bit quantum”
> (But a direct comparison is not so meaningful, actually)

In case of doubt, 256 bits?

Finite fields, block ciphers 2021-02-10 29 /43

Parameters choice (cont.)

What about block size?
» Security not (directly) related to computational power

> Dictated by the volume encrypted with a single key (cf. next)

In the end, it's always a cost/security tradeoff

(If you need a conventional BC with ridiculously large params,
SHACAL-2, w/ n =256, k =512 is a good choice!)

Finite fields, block ciphers 2021-02-10 30 /43

Symmetric encryption schemes

Finite fields, block ciphers O OISy 25

Block ciphers are not enough

What block ciphers do:
» One-to-one encryption of fixed-size messages
What do we want:
» One-to-many encryption of variable-size messages
> Why?
» Variable-size — kind of obvious?

» One-to-many — necessary for semantic security - cannot tell
if two ciphertexts are of the same message or not

Finite fields, block ciphers AZ=2E0 GG

Enter modes of operation

» A mode of operation transforms a block cipher into a
symmetric encryption scheme

>~ E~Enc:{0,1}"x{0,1}" x{0,1}* - {0,1}*
» For all ke {0,1}*, re{0,1}", Enc(k,r,-) is invertible
» {0,1}", r >0 is used to make encryption non-deterministic

» A mode is “good” if it gives “good encryption schemes” when
used with "good BCs"

» So what’s a good encryption scheme?

Finite fields, block ciphers AP0 SRy

IND-CPA for Symmetric encryption

IND-CPA for Enc: An adversary cannot distinguish Enc(k, mp)
from Enc(k, my) for an unknown key k and equal-length messages
mg, my when given oracle access to an Enc(k,-) oracle:

The Challenger chooses a key k « {0,1}"

The Adversary may repeatedly submit queries x; to the
Challenger

The Challenger answers a query with Enc(k, r;, x;)

The Adversary now submits mg, m; of equal length

H The Challenger draws b « {0,1}, answers with Enc(k,r’, mp)
[@ The Adversary tries to guess b

> The choice of r;, r’ is defined by the mode (made explicit
here, may be omitted)

Finite fields, block ciphers 2021-02-10 34 /43

IND-CPA comments

» A random adversary succeeds w/ prob. 1/2 — the correct
success measure is (again) the advantage over this

> (Same as for PRP security)

> An adversary may always succeed w/ advantage 1 given
enough ressources

> Find the key spending time t < 2" and a few oracle queries

> What matters (again) is the “best possible” advantage in
function of the attack complexity

Finite fields, block ciphers 202102710 35 /43

First (non-) mode example: ECB

» ECB: just concatenate independent calls to €

Electronic Code Book mode
mo||mi||... = E(k,mo)||E(k, m1)|...

» No security

> Exercise: give a simple attack on ECB for the IND-CPA
security notion w/ advantage 1, low complexity

Finite fields, block ciphers 2021-02-10 36 /43

Second (actual) mode example: CBC

» Cipher Block Chaining: Chain blocks together (duh)

Cipher Block Chaining mode

rxmo|lmy|... > co:=E(k,mg® r)l||cl:=E(k,m &)| ..

» Output block i (ciphtertext) added (XORed) to input block
i+ 1 (plaintext)

» For first (mg) block: use random IV r

» Okay security in theory ~ okay security in practice if used
properly

Finite fields, block ciphers 2021-02-10 37 /43

CBC IVs

CBC has bad IND-CPA security if the IVs are not random

» Consider an IND-CPA adversary who asks an oracle query
CBC-ENC(m), gets r,c =E(k,m® r) (where & is the cipher
used in CBC-ENC)

» Assume the adversary knows that for the next IV r/,
Pr[r’ = x] is large

» Sends two challenges mp=m&r@&x, m=my®1

» Gets ¢, = CBC-ENC(myp), b« {0,1}

» If cp=c, guess b=0, else b=1

Finite fields, block ciphers 2021-02-10 38 /43

Generic CBC collision attack

Even with random Vs, CBC can be attacked
An observation:

» For a fixed k, £(k,-) is a permutation so
E(k,x)=E(k,y) = x=y

» In CBC, inputs to £ are of the form x & y where x is a
message block and y an IV or a ciphertext block

> So&(k,xay)=E(k,x @y) xay=xay'

A consequence:

s f g =E(k,mi®ci1) = CJ’ = E(k, mj’-) Cf_l), then
m; ® ci_1 = mJ’- ® Cj_l, and then ¢;_1 @ ch_l =m; ® mJ’-

» ~ knowing identical ciphertext blocks reveals information
about the message blocks

» = breaks IND-CPA security

-_Regardless of the security of £ (i.e. even if it is ideal)!

Finite fields, block ciphers 2021-02-10 39 /43

CBC collisions: how likely?

How soon does a collision happen?
> Assumption: the distribution of the (x ® y) is ~ uniform

> If y is an IV it has to be (close to) uniformly random,
otherwise we have an attack (two slides ago)

» If y = E(k, z) is a ciphertext block, ditto for y knowing z,
otherwise we have an attack on £

» = A collision occurs w.h.p. after \/#{0,1}" = 2"/2 blocks are
observed (with identical key k) < The birthday bound

~ (Slightly more precisely, w/ prob. ~ ¢%/2",q < 2"/? after q
blocks)

Finite fields, block ciphers 2021-02-10 40/43

Some CBC recap

A decent mode, but
» Must use uniformly random Vs

» Must change key much before encrypting 212 plocks when
using an n-bit block cipher

» And this regardless of the key size k

» Only "birthday bound” security: this is a common restriction
for modes of operation (cf. next slide)

Finite fields, block ciphers 2021-02-10 41 /43

Another classical mode: CTR

Counter mode

mo||mi|... — E(k,s++) ®@ mg||E(k,s++) & my]|...

» This uses a global state s for the counter, with C-like
semantics for s++

» Encrypts a public counter ~ pseudo-random keystream ~»
(perfect) one-time-pad approximation (i.e. a stream cipher)

» Like CBC, must change key much before encrypting 2"/2
blocks when using an n-bit block cipher

Finite fields, block ciphers 2021-02-10 42 /43

Security reduction

» For good modes such as CBC, CTR, one can prove statements
of the form: “if [the mode] is instantiated with a ‘good PRP’,
then this gives a ‘good IND-CPA encryption scheme’ "

> This is an example of security reduction (here of the
encryption scheme to the block cipher)

» Quite common & useful in crypto ~ modular designs are nice

Finite fields, block ciphers 2021-02-10 43 /43

	F2 primer
	Symmetric cryptography
	BC: First definitions
	Symmetric encryption schemes

