Introduction to cryptology TD#2

2020-W07,...

Exercise 1: Arithmetic in $\mathbb{Z}/2^8\mathbb{Z}$ and \mathbb{F}_{2^8}

- **Q. 1:** Compute the following in $\mathbb{Z}/2^8\mathbb{Z}$:
 - -153 + 221
 - -29 + 8
 - -64 + 31
- **Q. 2:** Compute the following in \mathbb{F}_2^8 (where a decimal representation is used for the elements, i.e. the addition corresponds to the bitwise XOR):
 - -153 + 221
 - -29 + 8
 - -64 + 31
- **Q. 3:** Under what condition on their operands are the additions in $\mathbb{Z}/2^8\mathbb{Z}$ and \mathbb{F}_{2^8} equivalent? (Prove it.)

Exercise 2: Bit-vector arithmetic

Q. 1: Write a small "naïve" C function that computes the scalar product of two vectors of \mathbb{F}_2^{32} . This function must have the following prototype:

```
uint32_t scalar32_naive(uint32_t x, uint32_t y).
```

Q. 2: Write another implementation of the same function, of prototype

```
uint32_t scalar32_popcnt(uint32_t x, uint32_t y),
```

that uses a bitwise and instruction "&" and the population count function for 32-bit words "__builtin_popcount()".

- **Q.** 3 Explain why in C, assuming that x is of type uint32_t, x << 1 computes the multiplication of x by two in $\mathbb{Z}/2^{32}\mathbb{Z}$.
- Q. 4 Explain why in C, assuming that x is of type uint32_t, $x \gg 1$ is equivalent to $x \neq 2$.

Q. 5 Write the matrix M of dimension 8 over \mathbb{F}_2 such that $M\mathbf{x} = \mathtt{mul2}(\mathbf{x})$, where $\mathtt{mul2}$ is defined as:

```
uint8_t mul2(uint8_t x)
{
  return ((x << 1) & 0xFF);
}</pre>
```

and x and x are in natural correspondence (with the encoding convention that $x = (x_0 \ x_1 \ \dots x_7)^t \mapsto x_7 2^7 + x_6 2^6 + \dots + x_0 2^0$). Is this matrix invertible?

Q. 6 What are the logical formulas computed by the following functions on their inputs?

```
uint32_t f1(uint32_t x, uint32_t y, uint32_t z)
{
  return ((x & y) | (~x & z));
}
uint32_t f2(uint32_t x, uint32_t y, uint32_t z)
{
  return ((x & y) | (x & z) | (y & z));
}
uint32_t f3(uint32_t x, uint32_t y, uint32_t z)
{
  return (z ^ (x & (y ^ z)));
}
```

Which of these functions can be computed as matrices?

Exercise 3: PRPs

Let $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}$ be a block cipher for which there is a subset $\mathcal{K}' \subset \{0,1\}^{\kappa}$ of weak keys of size 2^{w} such that if $k \in \mathcal{K}'$, $\mathcal{E}(k,\cdot): x \mapsto x$.

- **Q. 1:** Give a lower-bound for $\mathbf{Adv}_{\mathcal{E}}^{PRP}(1,1)$.
- **Q. 2:** Some mode of operation of block ciphers rely on the fact that $\mathcal{E}(k,0)$ is an unpredictable value when k is random and secret (with 0 denoting the all-zero binary string). Show that this is a reasonable assumption. More precisely, give a lower-bound on

Adv $_{\mathcal{E}}^{\mathrm{PRP}}(1,1)$ assuming that one can predict this value with unit time and success probability p.

Q. 3: Assume that \mathcal{E} is a "good" block cipher. Define another cipher \mathcal{E}' built from \mathcal{E} s.t. $\mathcal{E}'(k,0)$ is trivially predictable for any key (several constructions are possible).

Exercise 42: CTR mode

Let $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher. The CTR encryption of a message $m = m_0 ||m_1|| \dots$ (where all of the m_i s are n-bit long) with \mathcal{E} and a key k is given by $m_0 \oplus \mathcal{E}(k, t_0) ||m_1 \oplus \mathcal{E}(k, t_1) \dots$, where the t_i s are n-bit pairwise-distinct values (for instance one can take $t_0 = 0$, $t_1 = 1$, etc.). In other words, one is encrypting a message with a pseudo-random keystream generated by \mathcal{E} .

Q. 1: Show that the keystream used to encrypt a message of 2^n blocks (that is $n2^n$ -bit long) is not perfectly random, if it is generated with a single key.

Hint: Exploit the fact that $\mathcal{E}(k,\cdot)$ is invertible.

We may try to solve the problem of the previous question by defining $\mathcal{F}(k,x) := \mathcal{E}(k,x) \oplus x$. This makes \mathcal{F} non-injective. One may then still encrypt a message $m = m_0 ||m_1|| \dots$ as $m_0 \oplus \mathcal{F}(k,t_0) ||m_1 \oplus \mathcal{F}(k,t_1) \dots$

Q. 2: Show that if the t_i values are public, then \mathcal{F} suffers from the same problem as \mathcal{E} in Q. 1.

(However, it can be shown that if the t_i s are secret and "random" enough (for instance $t_i = \mathcal{E}(k', t'_i)$ where the t'_i s are pairwise distinct), then \mathcal{F} does not suffer from the same limitation as \mathcal{E} in CTR mode anymore.)

Exercise 5: ECB, toy modes

Let $\mathcal{E}: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a block cipher. The ECB encryption of a message $m = m_0 ||m_1|| \dots$ (where all of the m_i s are n-bit long) with \mathcal{E} and a key k is given by $\mathcal{E}(k, m_0) ||\mathcal{E}(k, m_1) \dots$

Q. 1: Explain why ECB is not a good mode (in particular why it is not IND-CPA).

We modify ECB to the following toy mode, that uses domain separation to solve some of the issues of ECB: the encryption of a message $m = m_0 ||m_1|| \dots$ (where all of the m_i s are n - b-bit long) with \mathcal{E} and a key k is given by $\mathcal{E}(k, m_0 ||t_0) ||\mathcal{E}(k, m_1 ||t_1) \dots$, where the t_i s are b-bit pairwise-distinct values (for instance one can take $t_0 = 0$, $t_1 = 1$, etc.).

- **Q. 2:** Give an upper-bound for the maximum message length that can be securely encrypted with this toy mode before having to change the key.
- **Q. 3:** Are messages encrypted as above authenticated?

We modify again the toy mode. The encryption of a message $m = m_0 ||m_1|| \dots$ (where all of the m_i s are n-b-r-bit long) with \mathcal{E} and a key k is given by $\mathcal{E}(k, m_0 ||t_0||0^r)|| \mathcal{E}(k, m_1 ||t_1||0^r) \dots$, where the t_i s are b-bit pairwise-distinct values and 0^r is a string or r zeros.

Q. 4: What is the probability that a uniformly random ciphertext corresponds to a message encrypted with the above toy mode? Explain how this allows to perform some authentication of the ciphertexts. What do you think should be the requirements on \mathcal{E} in that case? Give a trivial (but somewhat limited) attack that may still be performed by an adversary.