Introduction to cryptology (GBIN8U16) Final Examination

2020-05-15

Instructions

- All documents are allowed.
- Communication regarding the exam is strictly forbidden.
- All answers must be carefully justified to get maximum credit.
- You may answer in English or French.
- Suggested digital format: raw text/markdown. Send at most *two* files (one main file plus one optional appendix) starting with *your student number_your name*.
- Indicative duration: 2 hours.
- Deadline: 2020-05-16T09:00+0200.
- Send your answers to pierre.karpman@univ-grenoble-alpes.fr.

Exercise 1: Crypto culture

Name one:

- 1. Block cipher.
- 2. MAC.
- 3. Block cipher mode of operation for *encryption* (at least).
- 4. Hash function.

REMARK: You get double points for each sub-question if no one else provided the same answer, and triple points if the answer additionally cannot be found on wikipedia.

Exercise 2: Unknown babies and giants

REMARK: For each algorithm that you need to specify, you may either use pseudocode or a clear textual description.

Let S be a set of $N \in \mathbb{N}$ arbitrary elements (*i.e.* elements that do not necessarily have a "natural" representation as an integer), where N is a priori unknown.

Q.1: You are given an oracle \mathbb{O} that, whenever it is called, returns an element of S drawn uniformly at random *without replacement* (*i.e.* all elements are equally likely to be returned on the first call, but an element that was returned in a prior call cannot be returned anymore).

- 1. Specify an algorithm that uses \mathbb{O} and returns N.
- 2. Analyse its time, query and memory complexity.

Q.2: The oracle \mathbb{O} is now modified such that whenever it is called, it returns an element of S drawn uniformly at random *with replacement* (*i.e.* all elements are equally likely to be returned on *any* call).

- 1. Specify an algorithm that uses \mathbb{O} and returns an estimate for N and that has a better time complexity than the algorithm from Q.1.
- 2. Analyse its time, query and memory complexity. Be careful to justify the assumptions you may make on data structures to reach this complexity.
- 3. Assuming that your algorithm is not very precise in the estimate it returns, how could you make it more so without increasing its complexity?

Let now $\mathbb{G} = \langle g \rangle$ be a finite cyclic group of unknown order (or cardinality) N and g be one of its generators. Suppose that you know how to perform elementary operations in \mathbb{G} (*i.e.* given $a, b \in \mathbb{G}$, you know how to compute $ab \in \mathbb{G}$; given a you know how to compute a^{-1}) in one time unit.

Q.3: Rephrase your algorithm of **Q.1** such that on input g it returns its order N (which is equal to the order of the group \mathbb{G}).

Q.4: Suppose now that you already know *B* and *W* such that $B \leq N \leq B + W$.

- 1. Specify an algorithm that takes g as input and returns N with time and memory complexity $\mathcal{O}(\sqrt{W})$.
- 2. Prove the stated complexity for your algorithm. Be careful to justify the assumptions you may make on data structures and elementary steps.

HINT: Notice that N can be written as $N = B + u\sqrt{W} + v$ where $u, v \in [0, \sqrt{W}]$, and that this implies the equality $g^{B+u\sqrt{W}} = g^{-v}$ (since $g^{B+u\sqrt{W}+v} = g^N = g^0 = 1$).

Q.5: Suppose now that you do not know any upper and lower bound for N.

- 1. Adapt the algorithm of **Q.4** by starting from the (possibly incorrect) assumption that $N \in [0, 2]$ and by increasing the size of the estimated interval at every step.
- 2. Analyse the time and memory complexity of your algorithm.

HINT: Recall that for $q \in \mathbb{R}$ one has that $\sum_{i=0}^{n} q^{i} = \frac{1-q^{n+1}}{1-q}$.

Q.6: Assume that \mathbb{G} is a "candidate" group to be used in a Diffie-Hellman key exchange but that one first wants to check that its order is large enough to prevent generic attacks.

1. Which algorithms from $Q.3 \sim 5$ are appropriate to perform this task?

Exercise 3: Cloaks and passwords, daggers and keys

Q.1: Let p be a passphrase of possibly more than 20 unicode characters, each stored on one byte or more.

1. What cryptographic primitive could you use as a key derivation function (KDF) to map p to a 128-bit string suitable for use as the key of a block cipher?

A ring of conspirators all share a common passphrase (such as: "Never believe it. I am more an antique Roman than a Dane. Here's yet some liquor left."). One conspirator is guarding a safe house behind a closed door, while a second wishes to prove his/her membership to the other.

Q.2:

1. Explain how to solve the above problem assuming that the safe house natively benefits from a "secure channel" (for instance one can slip a piece of paper under the door).

Q.2: We now assume that no such secure channel exists (for instance because of the use of a hermetic reinforced door), but that only passive adversaries (*i.e.* eavesdroppers) are a concern. Explain how to solve the problem in this case with a "challenge-response" protocol, and specify the most appropriate security definitions to formally express the requirements:

- 1. Using a KDF and a block cipher.
- 2. Using a KDF and a MAC.

Q.3: The conspirator guarding the door had the bad idea of deciding to draw the challenges at random, using a pseudo-random numbers generator with only N possible outputs, where N is "small".

- 1. Explain how a counterspy that was able to monitor enough (successful) runs of the protocol could gain access to the safe house without knowing the passphrase.
- 2. Assuming that the PRNG outputs are independent and uniform, how many runs should the counterspy monitor before trying to impersonate a conspirator without (much) risk?

Q.4: An alternative brutal strategy for a counterspy would be to try finding an appropriate secret by performing an exhaustive search.

1. What is the best target for this search in function of P (the number of candidate passphrases), P_R (the number of calls to the (known) conspirators' KDF one can make per second for a fixed unspecified monetary unit \mathfrak{A}), K (the number of possible keys of the used block cipher or MAC), K_R (the number of calls to the (known) conspirators' block cipher/MAC one can make per second for one \mathfrak{A}).

Q.5:

1. Describe a scenario where your protocol of **Q.2** is not sufficient to guarantee the security of the conspirators.

Figure 1: XKCD#538: Not an acceptable answer to **Q.5**.