Introduction to cryptology TD#6

2019-04

In the following exercises, N = pq for distinct prime numbers p and q; $e, d \in (\mathbb{Z}/\varphi(N)\mathbb{Z})^{\times} \setminus \{1\}$ such that $ed \equiv 1 \mod \varphi(N)$; RSA-P: $\mathbb{Z}/N\mathbb{Z} \to \mathbb{Z}/N\mathbb{Z}$ is defined by $m \mapsto m^e \mod N$, and its inverse RSA-P⁻¹ is defined by $m \mapsto m^d \mod N$.

Exercise 1: Semi-homomorphic property of an RSA permutation

- **Q. 1:** Let $m, m' \in \mathbb{Z}/N\mathbb{Z}$, c = RSA-P(m), c' = RSA-P(m'). Give an expression for cc' of the form x^e (for some x). Use this expression to compute the value RSA-P⁻¹(cc').
- **Q. 2:** Explain how the above property allows to multiply two numbers without decrypting them.
- **Q. 3:** Note that the above procedure is deterministic. Does a modified procedure that works with encrypted numbers of the form pad(x) (where pad is a non-deterministic function) still allow to multiply numbers in encrypted form?

Exercise 2: RSA-CRT

- **Q. 1:** Let $C_p = q \times (q^{-1} \mod p)$; $C_q = p \times (p^{-1} \mod q)$.
 - 1. Compute the following: $C_p \mod p$; $C_p \mod q$; $C_q \mod p$; $C_q \mod q$.
- **Q. 2:** Let $0 \le x < N$ be such that $x \equiv x_p \mod p$; $x \equiv x_q \mod q$.
 - 1. Using the Chinese Remainder Theorem (CRT), give the value of x in function of C_p , x_p , C_q , x_q and N.
- **Q. 3:** A user wishes to implement RSA- P^{-1} by computing the exponentiation to d using the CRT.
 - 1. Explain why if RSA-P and RSA-P⁻¹ are used within an RSA cryptosystem, a CRT implementation may only be used by someone knowing the private key
 - 2. Give the details of such an implementation.
- **Q. 4:** We now want to show that if a *single fault* occurs during the CRT computation of $m^d \mod N$, the faulty result may be used to factor N. Let $u = m^d \mod N$ be the expected result of the computation and v be a faulty result such that $v \equiv u \mod p$, $v \not\equiv u \mod q$.
 - 1. Give an expression for $a := u^e \mod N$ in function of m, C_p, C_q, p, q , and N.

- 2. Give an expression for $b := v^e \mod N$ in function of m, C_p , C_q , p, q, N, and an unknown quantity x.
- 3. Show that gcd((a-b), N) reveals a non-trivial factor of N.

Exercise 3: Domain of an RSA permutation

- **Q. 1:** Using the extended Euclid algorithm, show that if $0 < \alpha < N$ is such that $gcd(\alpha, N) = 1$, then α has a multiplicative inverse modulo N. Show then that for any e > 0, α^e is invertible modulo N.
- **Q. 2:** Consider now $0 < \alpha < N$ with $gcd(\alpha, N) = p$. What is the value of $\alpha \mod p$? Does α have an inverse modulo N? What is $gcd(\alpha, q)$ equal to? Using the CRT, how many such elements are there in $\mathbb{Z}/N\mathbb{Z}$? What is $\alpha^{q-1} \mod q$ equal to?
- **Q. 3:** Let 0 < u < N be the unique number modulo N that verifies $u = 0 \mod p$, $u = 1 \mod q$. How can you compute u using inversion modulo q? Let α be as in the above question; what are $\alpha^{q-1} \mod N$ and $\alpha^{k(q-1)} \mod N$ (for any k) equal to? Give a necessary condition on e for the map $x \mapsto x^e$ to be invertible on α .
- **Q. 4:** Let $e \in (\mathbb{Z}/\varphi(N)\mathbb{Z})^{\times}$, $d = e^{-1}$. What is $ed \mod (p-1)(q-1)$ equal to? What is $\alpha^{ed} \mod q$ equal to? And $\alpha^{ed} \mod N$? Are there any elements not invertible by $x \mapsto x^e$? What is the domain of an RSA permutation?