Introduction to cryptology TD\#4

2018-W11

Exercise 1: MACs

Q. 1: Let $\mathcal{M}:\{0,1\}^{\kappa} \times\{0,1\}^{*} \rightarrow\{0,1\}^{\tau}$ be a "perfect" MAC whose outputs are uniformly and independently random. An adversary is given a single message m and is asked to find the corresponding tag $\mathcal{M}(k, m)$ when k is unknown. What is his success probability (in function of κ and τ)?
Q. 2: Let \mathcal{M} be as above, but with the constraint that it is linear. Give a universal forgery attack on \mathcal{M} with small time and query complexity. Does your attack still work if \mathcal{M} takes an additional "nonce" input r that is never reused from one call to another?
Q. 3: Let \mathcal{M} be as in \mathbf{Q}. 1. What is the problem with the following scheme

$$
k_{e}, r, k_{a}, m \mapsto \mathrm{CBC}-\operatorname{Encrypt}\left(k_{e}, r, m\right) \| \mathcal{M}\left(k_{a}, m\right),
$$

that combines encryption and authentication?

Exercise 2: MACs bis: CBC-MAC

We define a vanilla CBC-MAC with zero IV as $k, m \mapsto\lfloor\mathrm{CBC}-\operatorname{Encrypt}(k, 0, m)\rfloor_{\text {last }}$, where $\lfloor\cdot\rfloor_{\text {last }}$ truncates its input to its last block (for the sake of simplicity, we assume that the input message always has a length multiple the block size).
Q. 1: Why is this scheme not secure?

Hint: Notice that the tag of a single-block message m_{0} appears as intermediate value when computing the tag of $m_{0} \| m_{1}$, for any value of m_{1}. If you know m_{0} and its associated tag t, how can you pick m_{1} to ensure that the two-block message $m_{0} \| m_{1}$ also has tag t ?
Q. 2: One proposes to solve the above issue by composing vanilla CBC-MAC with a oneblock encryption $\mathcal{E}(k, \cdot)$ with a key k independent from the one used in vanilla CBC-MAC. Do you think that this makes sense?
Q. 3: Is it possible to extract a similar MAC scheme from the CTR mode?

Exercise 3: MACs ter: MAC with a small state

A designer wants to design a MAC using a block cipher $\mathcal{E}:\{0,1\}^{128} \times\{0,1\}^{32} \rightarrow\{0,1\}^{32}$. He wants to use a variant of CBC-MAC, but with larger tags than what a direct application
using \mathcal{E} would allow. Specifically, he wishes for 128 -bit tags. The result is the following. On input ($k, k_{0}, k_{1}, k_{2}, k_{3}, m$), compute:
$x:=\operatorname{CBC}-\operatorname{Encrypt}[\mathcal{E}](k, 0, m) \quad y_{0}:=\mathcal{E}\left(k_{0}, x\right) \quad y_{1}:=\mathcal{E}\left(k_{1}, x\right) \quad y_{2}:=\mathcal{E}\left(k_{2}, x\right) \quad y_{3}:=\mathcal{E}\left(k_{3}, x\right)$,
and output $y:=y_{0}\left\|y_{1}\right\| y_{2} \| y_{3}$.
Q. 1: How many possible values can be taken by x (for any k, m)?
Q. 2: How many possible values can be taken by y, for a fixed MAC key $\left(k, k_{0}, k_{1}, k_{2}, k_{3}\right)$?
Q. 3: Give a strategy that allows to gather all possible tags for a fixed MAC key, with time, memory and query complexity 2^{32} (assuming for simplicity that if the input message is 32 -bit long, no padding is performed in the CBC encryption).
Q. 4 Assuming that the precomputation of the previous question has been performed, what is the forgery probability for a random message? Is this MAC a good MAC?
Q. 5 Is the modified scheme that on input $\left(k, k_{0}, k_{1}, k_{2}, k_{3}, m\right)$ computes:
$x:=\mathrm{CBC}-\operatorname{Encrypt}[\mathcal{E}](k, 0, m) \quad y_{0}:=\mathcal{E}\left(k_{0}, x\right) \quad y_{1}:=\mathcal{E}\left(k_{1}, y_{0}\right) \quad y_{2}:=\mathcal{E}\left(k_{2}, y_{1}\right) \quad y_{3}:=\mathcal{E}\left(k_{3}, y_{2}\right)$,
and outputs $y:=y_{0}\left\|y_{1}\right\| y_{2} \| y_{3}$ protected against the above attack?

