
Introduction to cryptology

TD#4

2018-W11

Exercise 1: MACs

Q. 1: Let M : {0, 1}κ × {0, 1}∗ → {0, 1}τ be a “perfect” MAC whose outputs are
uniformly and independently random. An adversary is given a single message m and is
asked to find the corresponding tag M(k,m) when k is unknown. What is his success
probability (in function of κ and τ)?

Q. 2: Let M be as above, but with the constraint that it is linear. Give a universal
forgery attack on M with small time and query complexity. Does your attack still work
if M takes an additional “nonce” input r that is never reused from one call to another?

Q. 3: Let M be as in Q. 1. What is the problem with the following scheme

ke, r, ka,m 7→ CBC-Encrypt(ke, r,m)||M(ka,m),

that combines encryption and authentication?

Exercise 2: MACs bis: CBC-MAC

We define a vanilla CBC-MAC with zero IV as k,m 7→ bCBC-Encrypt(k, 0,m)clast, where
b·clast truncates its input to its last block (for the sake of simplicity, we assume that the
input message always has a length multiple the block size).

Q. 1: Why is this scheme not secure?

Hint: Notice that the tag of a single-block message m0 appears as intermediate value
when computing the tag of m0||m1, for any value of m1. If you know m0 and its associated
tag t, how can you pick m1 to ensure that the two-block message m0||m1 also has tag t?

Q. 2: One proposes to solve the above issue by composing vanilla CBC-MAC with a one-
block encryption E(k, ·) with a key k independent from the one used in vanilla CBC-MAC.
Do you think that this makes sense?

Q. 3: Is it possible to extract a similar MAC scheme from the CTR mode?

Exercise 3: MACs ter: MAC with a small state

A designer wants to design a MAC using a block cipher E : {0, 1}128×{0, 1}32 → {0, 1}32.
He wants to use a variant of CBC-MAC, but with larger tags than what a direct application

1

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry intro2018 td4.pdf

using E would allow. Specifically, he wishes for 128-bit tags. The result is the following.
On input (k, k0, k1, k2, k3,m), compute:

x := CBC-Encrypt[E](k, 0,m) y0 := E(k0, x) y1 := E(k1, x) y2 := E(k2, x) y3 := E(k3, x),

and output y := y0||y1||y2||y3.

Q. 1: How many possible values can be taken by x (for any k, m)?

Q. 2: How many possible values can be taken by y, for a fixed MAC key (k, k0, k1, k2, k3)?

Q. 3: Give a strategy that allows to gather all possible tags for a fixed MAC key, with
time, memory and query complexity 232 (assuming for simplicity that if the input message
is 32-bit long, no padding is performed in the CBC encryption).

Q. 4 Assuming that the precomputation of the previous question has been performed,
what is the forgery probability for a random message? Is this MAC a good MAC?

Q. 5 Is the modified scheme that on input (k, k0, k1, k2, k3,m) computes:

x := CBC-Encrypt[E](k, 0,m) y0 := E(k0, x) y1 := E(k1, y0) y2 := E(k2, y1) y3 := E(k3, y2),

and outputs y := y0||y1||y2||y3 protected against the above attack?

2

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_intro2018_td4.pdf

