Introduction to cryptology
 TD\#2

2019-W05,...

Exercise 1: Arithmetic in $\mathbb{Z} / 2^{8} \mathbb{Z}$ and $\mathbb{F}_{2^{8}}$
Q. 1: Compute the following in $\mathbb{Z} / 2^{8} \mathbb{Z}$:
$-153+221$
$-29+8$
$-64+31$
Q. 2: Compute the following in \mathbb{F}_{2}^{8} (where a decimal representation is used for the elements, i.e. the addition corresponds to the bitwise XOR):
$-153+221$
$-29+8$
$-64+31$
Q. 3: Under what condition on their operands are the additions in $\mathbb{Z} / 2^{8} \mathbb{Z}$ and $\mathbb{F}_{2^{8}}$ equivalent? (Prove it.)

Exercise 2: Bit-vector arithmetic

Q. 1: Write a small "naïve" C function that computes the scalar product of two vectors of \mathbb{F}_{2}^{32}. This function must have the following prototype:

```
uint32_t scalar32_naive(uint32_t x, uint32_t y).
```

Q. 2: Write another implementation of the same function, of prototype

```
uint32_t scalar32_popcnt(uint32_t x, uint32_t y),
```

that uses a bitwise and instruction "\&" and the population count function for 32 -bit words "-_builtin_popcount()".
Q. 3 Explain why in C, assuming that x is of type uint32_t, $\mathrm{x} \ll 1$ computes the multiplication of x by two in $\mathbb{Z} / 2^{32} \mathbb{Z}$.
Q. 4 Explain why in C, assuming that x is of type uint32_t, $\mathrm{x} \gg 1$ is equivalent to x / 2 .
Q. 5 Write the matrix M of dimension 8 over \mathbb{F}_{2} such that $M \mathrm{x}=\operatorname{mul2}(\mathrm{x})$, where mul2 is defined as:

```
uint8_t mul2(uint8_t x)
{
    return ((x << 1) & 0xFF);
}
```

and \boldsymbol{x} and x are in natural correspondence (with the encoding convention that $\boldsymbol{x}=$ $\left.\left(\begin{array}{lll}x_{0} & x_{1} & \ldots x_{7}\end{array}\right)^{t} \mapsto x_{7} 2^{7}+x_{6} 2^{6}+\ldots+x_{0} 2^{0}\right)$. Is this matrix invertible?
Q. 6 What are the logical formulas computed by the following functions on their inputs?

```
uint32_t f1(uint32_t x, uint32_t y, uint32_t z)
{
    return ((x & y) | (~x & z));
}
uint32_t f2(uint32_t x, uint32_t y, uint32_t z)
{
    return ((x & y) | (x & z) | (y & z));
}
uint32_t f2(uint32_t x, uint32_t y, uint32_t z)
{
    return (z ^ (x & (y ^ z)));
}
```

Which of these functions can be computed as matrices?

Exercise 3: PRPs

Let $\mathcal{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher for which there is a subset $\mathcal{K}^{\prime} \subset\{0,1\}^{\kappa}$ of weak keys of size 2^{w} such that if $k \in \mathcal{K}^{\prime}, \mathcal{E}(k, \cdot): x \mapsto x$.
Q. 1: Give a lower-bound for $\operatorname{Adv}_{\mathcal{E}}^{\mathrm{PRP}}(1,1)$.
Q. 2: Some mode of operation of block ciphers rely on the fact that $\mathcal{E}(k, 0)$ is an unpredictable value when k is random and secret (with 0 denoting the all-zero binary string).

Show that this is a reasonable assumption. More precisely, give a lower-bound on $\operatorname{Adv}_{\mathcal{E}}{ }^{\mathrm{PRP}}(1,1)$ assuming that one can predict this value with unit time and success probability p.
Q. 3: Assume that \mathcal{E} is a "good" block cipher. Define a related cipher \mathcal{E}^{\prime} for which $\mathcal{E}(k, 0)$ is trivially predictable for any key (several constructions are possible).

Exercise 4: CTR mode

Let $\mathcal{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher. The CTR encryption of a message $m=m_{0}\left\|m_{1}\right\| \ldots$ (where all of the m_{i} s are n-bit long) with \mathcal{E} and a key k is given by $m_{0} \oplus \mathcal{E}\left(k, t_{0}\right) \| m_{1} \oplus \mathcal{E}\left(k, t_{1}\right) \ldots$, where the t_{i} s are n-bit pairwise-distinct values (for instance one can take $t_{0}=0, t_{1}=1$, etc.). In other words, one is encrypting a message with a pseudo-random keystream generated by \mathcal{E}.
Q. 1 : Show that the keystream used to encrypt a message of 2^{n} blocks (that is $n 2^{n}$-bit long) is not perfectly random, if it is generated with a single key.

Hint: Exploit the fact that $\mathcal{E}(k, \cdot)$ is invertible.
We may try to solve the problem of the previous question by defining $\mathcal{E}^{\prime}(k, x):=$ $\mathcal{E}(k, x) \oplus x$. This makes \mathcal{E}^{\prime} non-injective. One may then still encrypt a message $m=$ $m_{0}\left\|m_{1}\right\| \ldots$ as $m_{0} \oplus \mathcal{E}^{\prime}\left(k, t_{0}\right) \| m_{1} \oplus \mathcal{E}^{\prime}\left(k, t_{1}\right) \ldots$
Q. 2: Show that if the t_{i} values are public, then \mathcal{E}^{\prime} suffers from the same problem as \mathcal{E} in Q. 1.
(However, it can be shown that if the $t_{i} \mathrm{~S}$ are secret and "random" enough (for instance $t_{i}=\mathcal{E}^{\prime \prime}\left(k, t_{i}^{\prime}\right)$ where the t_{i}^{\prime} s are pairwise distinct), then \mathcal{E}^{\prime} does achieve better security than \mathcal{E} in CTR mode.)

Exercise 5: ECB, toy modes

Let $\mathcal{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher. The ECB encryption of a message $m=m_{0}\left\|m_{1}\right\| \ldots$ (where all of the m_{i} s are n-bit long) with \mathcal{E} and a key k is given by $\mathcal{E}\left(k, m_{0}\right) \| \mathcal{E}\left(k, m_{1}\right) \ldots$.
Q. 1: Explain why ECB is not a good mode (in particular why it is not IND-CPA).

We modify ECB to the following toy mode, that uses domain separation to solve some of the issues of ECB: the encryption of a message $m=m_{0}\left\|m_{1}\right\| \ldots$ (where all of the m_{i} s are $n-b$-bit long) with \mathcal{E} and a key k is given by $\mathcal{E}\left(k, m_{0} \| t_{0}\right) \| \mathcal{E}\left(k, m_{1} \| t_{1}\right) \ldots$, where the $t_{i} \mathrm{~s}$ are b-bit pairwise-distinct values (for instance one can take $t_{0}=0, t_{1}=1$, etc.).
Q. 2: Give an upper-bound for the maximum message length that can be securely encrypted with this toy mode before having to change the key.
Q. 3: Are messages encrypted as above authenticated?

We modify again the toy mode. The encryption of a message $m=m_{0}\left\|m_{1}\right\| \ldots$ (where all of the m_{i} S are $n-b-r$-bit long) with \mathcal{E} and a key k is given by $\mathcal{E}\left(k, m_{0}\left\|t_{0}\right\| 0^{r}\right) \| \mathcal{E}\left(k, m_{1}\left\|t_{1}\right\| 0^{r}\right) \ldots$, where the t_{i} s are b-bit pairwise-distinct values and 0^{r} is a string or r zeros.
Q. 4: What is the probability that a uniformly random ciphertext corresponds to a message encrypted with the above toy mode? Explain how this allows to perform some authentication of the ciphertexts. Give a trivial (but limited) attack that may still be performed by an adversary.

