
Collisions brief 2019–04 1/17

Introduction to cryptology (GBIN8U16)
]

Collisions brief

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2019–04

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html


Collisions brief 2019–04 2/17

Collision finding: how?

A collision in a function F ∶ I → O is a pair of two distinct inputs
that evaluate to the same image, i.e. a, b ≠ a s.t. F(a) = F(b)

How to find one in {F(i), i ∈ J0,MK} for some M (e.g. ≈ √
#O)?

The easy way:

1 Incrementally store the F(i) in a data structure w/ efficient
insertion & comparison
▸ Sorted list, hash table, etc.

2 Look for a duplicate at every insertion

Quite simple; easily parallelizable; huge memory complexity



Collisions brief 2019–04 3/17

Collision finding: memoryless, sequential

Objective: decreasing the memory complexity of collision search

▸ One idea: if O ⊆ I, look at iterates of F : compute F(x),
F(F(x)), etc. for some x

▸ If F i(x) = F j(x), then F i−1(x) and F j−1(x) form a collision
for F

▸ Question 1: how soon does such an event happen?

▸ Question 2: how is this useful?



Collisions brief 2019–04 4/17

Collision finding: Pollard ρ (A. 1)

Rho (ρ) structure of F r(x), r ∈ N:

▸ If F i(x) = F j(x), i < j the smallest values where this
happens, then F i(x) = F i+k(j−i)(x)

▸ ⇒ F r(x) has a cycle of length j − i

▸ ⇒ F r(x) has a tail of length i

Proposition

For a random function F , for a random starting point x , the
expected cycle and tail length of F r(x) are both ≈ √

#O
⇒ One can look for collisions in F r(x) instead of F(⋅) directly



Collisions brief 2019–04 5/17

Collision finding: Pollard ρ (A. 2)

To find a collision in F , find the tail (λ) and cycle (µ) length of
F r(x) for some x

▸ Can be done with constant (in F ’s parameter sizes) memory,
using Floyd’s cycle-finding algorithm:

1 Compute F i(x), F2i(x) in parallel, i = 1, . . .

2 Find k s.t. Fk(x) = F2k(x)
▸ Happens for first k ∶= a + λ > λ s.t. k ≡ 0 mod µ
▸ k − λ = a ≡ −λ mod µ, 2k − λ = 2a + λ = k + a ≡ a mod µ
▸ Most likely, Fk−1(x) = F2k−1(x), so the collision is “trivial”

3 Find k ′ s.t. Fk ′(x) = Fk(x); set µ = k ′ − k

4 Find k ′′ s.t. Fµ+k ′′(x) = Fk ′′(x); set λ = k ′′

5 Fλ−1(x) and Fλ+µ−1(x) form a non-trivial collision

⇒ Constant memory complexity, time complexity = Θ(√#O),
with small constant



Collisions brief 2019–04 6/17

Collision finding: Pollard ρ example

Let F r(0) be such that λ = 193, µ = 171, −193 ≡ 149 mod 171

▸ At k = 171×2 = 342 = 193+149, k −193 = 149 ≡ 149 mod 171

▸ And 2k − 193 = 193 + 2 × 149 ≡ −149 + 2 × 149 mod 171 ≡ 149
mod 171

▸ F342(0) = F684(0) = F513(0)
▸ µ = 513 − 342 = 171

▸ F193(0) = F364(0)⇒ λ = 193

▸ F192(0) and F363(0) form a collision



Collisions brief 2019–04 7/17

Parallel collision search

▸ Limitation of the ρ approach: it is sequential

▸ In the real world, one wants parallel approaches to hard
problems (if possible)

▸ Still with memory ≪ time

⇒ Parallel collision search (van Oorschot & Wiener, 1999)

▸ Define a distinguished property for the outputs of F (e.g.
F(x) starts with z zeroes for some z)

▸ For as many threads t, compute “chains” of αi = F i(st) for a
random st until αi is distinguished, then store (st , αi , i) e.g.
in a hash table, then start again

▸ If (st , αi , i), (st′ , αj , j) are s.t. αi = αj , i < j , compute
s ′t′ = F j−i(st′); find k s.t. Fk(st) = Fk(s ′t′)



Collisions brief 2019–04 8/17

PCS comments

▸ One must choose the distinguished property s.t.
▸ Not so many points are distinguished (to limit memory

complexity)
▸ Recomputing a chain from the start is not too long (to limit

time complexity)

▸ If (st , αi , i), (st′ , αj , j) are s.t. Fk(st′) = st for some k , the
collision is trivial

▸ If a chain enters a cycle w/o distinguished points, it never
terminates

▸ For a “well-chosen” distinguishing property, ≈ optimal
speed-up: T threads decrease running-time by a factor T



Collisions brief 2019–04 9/17

More collision-based attacks: TMTO

▸ Consider a key-recovery attack on a block cipher: one wants
to find a secret key k used with E

▸ In a chosen-plaintext scenario ↝ e.g. inverting x ↦ E(x ,0): a
“random” function

▸ Can be done with time = 2κ, negligible memory
▸ Assume that one can afford a huge offline precomputation

once
▸ Can be done with memory = 2κ, negligible (?) online time

(after a precomputation of time 2κ)

▸ Something in between?

⇒ Can use a time-memory tradeoff to speed-up the key search
(Hellman, 1980)

▸ (May be used to invert other functions as well)



Collisions brief 2019–04 10/17

TMTO: the idea

Offline (precomputation) phase:
▸ Form many iteration chains for x ↦ E(x ,0), for random

starting points s, storing the starting and ending points α in
e.g. a hash table
▸ That is, compute s → s0 → s1 → . . ., with s0 = E(s,0),

s1 = E(s0,0), etc.

▸ Use ≈M chains of length ≈ T
▸ The precomputation takes time MT



Collisions brief 2019–04 11/17

TMTO: the idea (cont.)

Online phase:

▸ Ask for c0 = E(k ,0)
▸ Compute the chain c0 → c00 → . . . starting at c0
▸ Search a collision of this chain with one of the M stored

ending points αi

▸ Restart computing the chain ending in αi from si , find t s.t.
E(sti ,0) = c0 ⇒ k = sti

This online phase is successful if c0 is part of a chain



Collisions brief 2019–04 12/17

TMTO: comments

▸ The memory complexity is M

▸ The online phase (if successful) takes time T (ignoring the
cost of searching for collisions among stored ending points)

▸ The success probability is ≈MT /2κ (assuming tha all chains
are distinct)
▸ Take MT ≈ 2κ?
▸ Does not work: when MT 2 ≈ 2κ, new chains collide with

exisiting ones w.h.p. ↝ does not cover more keyspace
▸ For instance, one chain of length 2κ/2 forms a ρ w.h.p.

▸ Take M = T = 2κ/3 ⇒ success probability of 2−κ/3



Collisions brief 2019–04 13/17

TMTO: more comments

▸ One may increase the success probability of Hellman’s TMTO
by considering N “independent” mappings x ↦ ϕ(E(x ,0))
▸ E.g., take ϕ to be a bit permutation

▸ If N =M = T ≈ 2κ/3, the success probability ≈ 1, the total
time and memory complexities are MN = TN = 22κ/3

▸ In practice, one would (probably) want the memory
complexity to be ≪ the time complexity

▸ In practice, checking if c i0 = α for some α is slow (memory
accesses are slow compared to computations) ⇒ only use α
with a distinguished property ⇒ only check when c i0 is
distinguished too



Collisions brief 2019–04 14/17

TMTO: even more comments

▸ If one wants to invert a permutation, Hellman’s TMTO ↝
Baby-step/Giant-step
▸ No chain collisions ⇒ better complexity

▸ This TMTO is somehow similar to PCS, but only one collision
is useful!



Collisions brief 2019–04 15/17

More collision-based attacks: MiTM

Suppose one has a good block cipher
E ∶ {0,1}κ × {0,1}n → {0,1}n, with a small κ (e.g. 64)
How can one define E ′ from E with a larger key?

▸ One idea: “double-encryption”: Take
E ′(k0∣∣k1, ⋅) = E(k1(E(k0, ⋅))

▸ This is quite simple

▸ But doesn’t really work...



Collisions brief 2019–04 16/17

Meet-in-the-Middle: how?

Assume n ≥ 2κ and one knows that E ′(k0∣∣k1,0) = c0

1 Compute L0[i] = E(i ,0), i ∈ {0,1}κ
2 Compute L1[i] = E−1(i , c0), i ∈ {0,1}κ
3 Search for a match between L0 and L1

▸ All collisions L0[x] = L1[y] give a candidate x ∣∣y for k0∣∣k1
▸ The time complexity is ≈ 2κ ⇒ not much more than for E

alone

▸ (But memory complexity increases to 2κ)

▸ (And an attack interrupted after t tries has success prob.
≈ t2/22κ instead of t/2κ)



Collisions brief 2019–04 17/17

Alternatives to double encryption

As double-encryption does not increase security so much, one may
instead:

▸ Use “triple-encryption” (this time not so bad, but quite slow)
↝ Triple-DES :S

▸ Use an “FX” construction: E ′(k0∣∣k1, x) = E(k0, x ⊕ k1)⊕ k1
(fast; not so bad, but not ideal)

▸ Use combinations of the two


