Introduction to cryptology (GBIN8U16) Collisions brief

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2019-04

Collision finding: how?

A collision in a function $\mathcal{F}: \mathcal{I} \rightarrow \mathcal{O}$ is a pair of two distinct inputs that evaluate to the same image, i.e. $a, b \neq a$ s.t. $\mathcal{F}(a)=\mathcal{F}(b)$

How to find one in $\{\mathcal{F}(i), i \in \llbracket 0, M \rrbracket\}$ for some M (e.g. $\approx \sqrt{\# \mathcal{O}})$? The easy way:

1 Incrementally store the $\mathcal{F}(i)$ in a data structure $w /$ efficient insertion \& comparison

- Sorted list, hash table, etc.

2 Look for a duplicate at every insertion
Quite simple; easily parallelizable; huge memory complexity

Collision finding: memoryless, sequential

Objective: decreasing the memory complexity of collision search

- One idea: if $\mathcal{O} \subseteq \mathcal{I}$, look at iterates of \mathcal{F} : compute $\mathcal{F}(x)$, $\mathcal{F}(\mathcal{F}(x))$, etc. for some x
- If $\mathcal{F}^{i}(x)=\mathcal{F}^{j}(x)$, then $\mathcal{F}^{i-1}(x)$ and $\mathcal{F}^{j-1}(x)$ form a collision for \mathcal{F}
- Question 1: how soon does such an event happen?
- Question 2: how is this useful?

Collision finding: Pollard ρ (A. 1)

Rho (ρ) structure of $\mathcal{F}^{r}(x), r \in \mathbb{N}$:

- If $\mathcal{F}^{i}(x)=\mathcal{F}^{j}(x), i<j$ the smallest values where this
happens, then $\mathcal{F}^{i}(x)=\mathcal{F}^{i+k(j-i)}(x)$
- $\Rightarrow \mathcal{F}^{r}(x)$ has a cycle of length $j-i$
- $\Rightarrow \mathcal{F}^{r}(x)$ has a tail of length i

Proposition

For a random function \mathcal{F}, for a random starting point x, the expected cycle and tail length of $\mathcal{F}^{r}(x)$ are both $\approx \sqrt{\# \mathcal{O}}$
\Rightarrow One can look for collisions in $\mathcal{F}^{r}(x)$ instead of $\mathcal{F}(\cdot)$ directly

Collision finding: Pollard ρ (A. 2)

To find a collision in \mathcal{F}, find the tail (λ) and cycle (μ) length of $\mathcal{F}^{r}(x)$ for some x

- Can be done with constant (in \mathcal{F} 's parameter sizes) memory, using Floyd's cycle-finding algorithm:
1 Compute $\mathcal{F}^{i}(x), \mathcal{F}^{2 i}(x)$ in parallel, $i=1, \ldots$
2 Find k s.t. $\mathcal{F}^{k}(x)=\mathcal{F}^{2 k}(x)$
- Happens for first $k:=a+\lambda>\lambda$ s.t. $k \equiv 0 \bmod \mu$
- $k-\lambda=a \equiv-\lambda \bmod \mu, 2 k-\lambda=2 a+\lambda=k+a \equiv a \bmod \mu$
- Most likely, $\mathcal{F}^{k-1}(x)=\mathcal{F}^{2 k-1}(x)$, so the collision is "trivial"

3 Find k^{\prime} s.t. $\mathcal{F}^{k^{\prime}}(x)=\mathcal{F}^{k}(x)$; set $\mu=k^{\prime}-k$
4 Find $k^{\prime \prime}$ s.t. $\mathcal{F}^{\mu+k^{\prime \prime}}(x)=\mathcal{F}^{k^{\prime \prime}}(x)$; set $\lambda=k^{\prime \prime}$
$5 \mathcal{F}^{\lambda-1}(x)$ and $\mathcal{F}^{\lambda+\mu-1}(x)$ form a non-trivial collision \Rightarrow Constant memory complexity, time complexity $=\Theta(\sqrt{\# \mathcal{O}})$, with small constant

Collision finding: Pollard ρ example

Let $\mathcal{F}^{r}(0)$ be such that $\lambda=193, \mu=171,-193 \equiv 149 \bmod 171$

- At $k=171 \times 2=342=193+149, k-193=149 \equiv 149 \bmod 171$
- And $2 k-193=193+2 \times 149 \equiv-149+2 \times 149 \bmod 171 \equiv 149$ $\bmod 171$
- $\mathcal{F}^{342}(0)=\mathcal{F}^{684}(0)=\mathcal{F}^{513}(0)$
- $\mu=513-342=171$
- $\mathcal{F}^{193}(0)=\mathcal{F}^{364}(0) \Rightarrow \lambda=193$
- $\mathcal{F}^{192}(0)$ and $\mathcal{F}^{363}(0)$ form a collision

Parallel collision search

- Limitation of the ρ approach: it is sequential
- In the real world, one wants parallel approaches to hard problems (if possible)
- Still with memory << time
\Rightarrow Parallel collision search (van Oorschot \& Wiener, 1999)
- Define a distinguished property for the outputs of \mathcal{F} (e.g. $\mathcal{F}(x)$ starts with z zeroes for some z)
- For as many threads t, compute "chains" of $\alpha_{i}=\mathcal{F}^{i}\left(s_{t}\right)$ for a random s_{t} until α_{i} is distinguished, then store $\left(s_{t}, \alpha_{i}, i\right)$ e.g. in a hash table, then start again
- If $\left(s_{t}, \alpha_{i}, i\right),\left(s_{t^{\prime}}, \alpha_{j}, j\right)$ are s.t. $\alpha_{i}=\alpha_{j}, i<j$, compute $s_{t^{\prime}}^{\prime}=\mathcal{F}^{j-i}\left(s_{t^{\prime}}\right)$; find k s.t. $\mathcal{F}^{k}\left(s_{t}\right)=\mathcal{F}^{k}\left(s_{t^{\prime}}^{\prime}\right)$
- One must choose the distinguished property s.t.
- Not so many points are distinguished (to limit memory complexity)
- Recomputing a chain from the start is not too long (to limit time complexity)
- If $\left(s_{t}, \alpha_{i}, i\right),\left(s_{t^{\prime}}, \alpha_{j}, j\right)$ are s.t. $\mathcal{F}^{k}\left(s_{t^{\prime}}\right)=s_{t}$ for some k, the collision is trivial
- If a chain enters a cycle w/o distinguished points, it never terminates
- For a "well-chosen" distinguishing property, \approx optimal speed-up: T threads decrease running-time by a factor T

More collision-based attacks: TMTO

- Consider a key-recovery attack on a block cipher: one wants to find a secret key k used with \mathcal{E}
- In a chosen-plaintext scenario \leadsto e.g. inverting $x \mapsto \mathcal{E}(x, 0):$ a "random" function
- Can be done with time $=2^{\kappa}$, negligible memory
- Assume that one can afford a huge offline precomputation once
- Can be done with memory $=2^{\kappa}$, negligible (?) online time (after a precomputation of time 2^{κ})
- Something in between?
\Rightarrow Can use a time-memory tradeoff to speed-up the key search (Hellman, 1980)
- (May be used to invert other functions as well)

TMTO: the idea

Offline (precomputation) phase:

- Form many iteration chains for $x \mapsto \mathcal{E}(x, 0)$, for random starting points s, storing the starting and ending points α in e.g. a hash table
- That is, compute $s \rightarrow s^{0} \rightarrow s^{1} \rightarrow \ldots$, with $s^{0}=\mathcal{E}(s, 0)$, $s^{1}=\mathcal{E}\left(s^{0}, 0\right)$, etc.
- Use $\approx M$ chains of length $\approx T$
- The precomputation takes time $M T$

TMTO: the idea (cont.)

Online phase:

- Ask for $c_{0}=\mathcal{E}(k, 0)$
- Compute the chain $c_{0} \rightarrow c_{0}^{0} \rightarrow \ldots$ starting at c_{0}
- Search a collision of this chain with one of the M stored ending points α_{i}
- Restart computing the chain ending in α_{i} from s_{i}, find t s.t. $\mathcal{E}\left(s_{i}^{t}, 0\right)=c_{0} \Rightarrow k=s_{i}^{t}$
This online phase is successful if c_{0} is part of a chain

TMTO: comments

- The memory complexity is M
- The online phase (if successful) takes time T (ignoring the cost of searching for collisions among stored ending points)
- The success probability is $\approx M T / 2^{\kappa}$ (assuming tha all chains are distinct)
- Take $M T \approx 2^{\kappa}$?
- Does not work: when $M T^{2} \approx 2^{\kappa}$, new chains collide with exisiting ones w.h.p. \leadsto does not cover more keyspace
- For instance, one chain of length $2^{\kappa / 2}$ forms a ρ w.h.p.
- Take $M=T=2^{\kappa / 3} \Rightarrow$ success probability of $2^{-\kappa / 3}$
- One may increase the success probability of Hellman's TMTO by considering N "independent" mappings $x \mapsto \varphi(\mathcal{E}(x, 0))$
- E.g., take φ to be a bit permutation
- If $N=M=T \approx 2^{\kappa / 3}$, the success probability ≈ 1, the total time and memory complexities are $M N=T N=2^{2 \kappa / 3}$
- In practice, one would (probably) want the memory complexity to be << the time complexity
- In practice, checking if $c_{0}^{j}=\alpha$ for some α is slow (memory accesses are slow compared to computations) \Rightarrow only use α with a distinguished property \Rightarrow only check when c_{0}^{i} is distinguished too

TMTO: even more comments

- If one wants to invert a permutation, Hellman's TMTO \leadsto Baby-step/Giant-step
- No chain collisions \Rightarrow better complexity
- This TMTO is somehow similar to PCS, but only one collision is useful!

More collision-based attacks: MiTM

Suppose one has a good block cipher
$\mathcal{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, with a small κ (e.g. 64)
How can one define \mathcal{E}^{\prime} from \mathcal{E} with a larger key?

- One idea: "double-encryption": Take $\mathcal{E}^{\prime}\left(k_{0} \| k_{1}, \cdot\right)=\mathcal{E}\left(k_{1}\left(\mathcal{E}\left(k_{0}, \cdot\right)\right)\right.$
- This is quite simple
- But doesn't really work...

Meet-in-the-Middle: how?

Assume $n \geq 2 \kappa$ and one knows that $\mathcal{E}^{\prime}\left(k_{0} \| k_{1}, 0\right)=c_{0}$
1 Compute $L_{0}[i]=\mathcal{E}(i, 0), i \in\{0,1\}^{\kappa}$
2 Compute $L_{1}[i]=\mathcal{E}^{-1}\left(i, c_{0}\right), i \in\{0,1\}^{\kappa}$
3 Search for a match between L_{0} and L_{1}

- All collisions $L_{0}[x]=L_{1}[y]$ give a candidate $x \| y$ for $k_{0} \| k_{1}$
- The time complexity is $\approx 2^{\kappa} \Rightarrow$ not much more than for \mathcal{E} alone
- (But memory complexity increases to 2^{κ})
- (And an attack interrupted after t tries has success prob. $\approx t^{2} / 2^{2 \kappa}$ instead of $t / 2^{\kappa}$)

Alternatives to double encryption

As double-encryption does not increase security so much, one may instead:

- Use "triple-encryption" (this time not so bad, but quite slow) \leadsto Triple-DES :S
- Use an "FX" construction: $\mathcal{E}^{\prime}\left(k_{0} \| k_{1}, x\right)=\mathcal{E}\left(k_{0}, x \oplus k_{1}\right) \oplus k_{1}$ (fast; not so bad, but not ideal)
- Use combinations of the two

