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Back to basics

Greatest common divisor (GCD)

The greatest common divisor of two numbers a, b ∈ N is the
largest number k , noted gcd(a, b) s.t. a = km, b = km′ for some
m, m′ ∈ N

Co-primality

Two integers a, b are called coprime if gcd(a, b) = 1

Examples:
I gcd(n, n) = gcd(n, 0) = n for any n
I gcd(n, 1) = 1 for any n
I gcd(n, kn) = n for any n
I gcd(p, q) = 1 for any two prime numbers p, q
I gcd(p, n) = 1 for any n < p
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GCD computation

Given two integers, it is:
I Very important to be able to compute their gcd
I Very easy to do so (cool!)

{

A nice recurrence:
I Let a, b ∈ N, a > b
I Then k = gcd(a, b) = gcd(b , a mod b)
I If a mod b = 0, then a = kb ⇒ gcd(a, b) = gcd(b , 0) = b
I If a mod b = r , then a = km = qb + r , b = km′
I ⇒ km = qkm′ + r ⇒ k(m − qm′) = r ⇒ k divides r too!
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Euclid’s algorithm

The previous recurrence leads to Euclid’s algorithm for gcd
computation

GCD computation (recursive)

Input: a, b < a
Output: gcd(a, b)

1 If b = 0, return a

2 Return gcd(b , a mod b)

In practice, iterative versions may be preferable
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Extended Euclid

Let a, b, k = gcd(a, b)

I Then for any u, v ∈ Z,
ua + vb = ukm + vkm′ = k(um + vm′) = kw with
w = um + vm′

I Of particular interest are any Bézout coefficients u, v s.t.
um + vm′ = 1, then we have ua + vb = k = gcd(a, b)

I One can easily compute such u, v by extending Euclid’s
algorithm
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Extended Euclid (cont.)

1 Start from the equalities (1) : 1 × a + 0 × b = a;
(2) : 0 × a + 1 × b = b

2 Compute the division a = q × b + r , then
(1) − q × (2) = 1 × a − q × b = r

3 Iterate until r becomes 1 or 0
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Example

{ On the board
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Extended Euclid w/ Matrices

I Define R0 := b, R1 := a. The sequence of remainders in

Euclid’s algorithm is obtained as
(
Ri+1

Ri+2

)
=

(
0 1
1 −Qi

) (
Ri

Ri+1

)
I Define Ti :=

(
0 1
1 −Qi

)
, one has

(
Ri+1

Ri+2

)
= Ti . . .T1T0

(
R0

R1

)
I and

(
G
0

)
= Tk−1 . . .T1T0

(
R0

R1

)
for some k , where G is the gcd

of a and b
I and if one defines M := Tk−1 . . .T1T0, one has

G = M0,0R0 + M0,1R1,⇒ Bézout coefficients from M

Note: Fast gcd algorithms exist to compute M with less work than
k iterations
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Applications: Dividing in Z/NZ

Let a, b ∈ Z/NZ, one wants to compute a/b
I Assuming we know how to multiply, we just need to compute

b−1

I To do this, compute u, v s.t. ub + vN = 1 = gcd(b ,N)
I If gcd(b ,N) > 1, b is not invertible mod N (why?)

I Then ub = 1 − vN ⇒ ub ≡ 1 mod N ⇒ u = b−1

Exercise: use this algorithm to prove that Z/NZ is a field iff N is
prime
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Digression: Little Fermat Theorem

Another possibility to find the inverse of a ∈ Z/NZ when N is prime
is to use the Little Fermat Theorem (LFT)

Little Fermat Theorem

Let p be a prime number, then for any 0 < a < p, one has ap−1 ≡ 1
mod p.
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Applications: Chinese Remainder Theorem

The (simple) Chinese Remainder Theorem (CRT)

Let m1, . . . ,mk be k pairwise coprime (positive) integers
(∀i, j gcd(mi ,mj) = 1) and x1, . . . , xk any integers (for simplicity s.t.
0 ≤ xi < mi), then there is a unique x mod

∏
i mi s.t. x ≡ xi

mod mi for all 1 ≥ i ≥ k

I Given x, mi , it is easy to compute xi = x mod mi

I The inverse problem is in fact also easy, using the extended
Euclid algorithm

Note: This theorem is very useful! (E.g. used in the admitted
Pohlig-Hellman algorithm; also nice to speed-up modular/big
number arithmetic)
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CRT: how?

CRT reconstruction (Lagrange basis)

Input: m1, . . . ,mk , x1, . . . , xk

Output: The unique 0 ≥ x <
∏

mi s.t. x ≡ xi mod mi

1 Let M ←[
∏

i mi

2 For all 1 ≥ i ≥ k

3 Mi ←[ M/mi

4 Let ai be such that aiMi ≡ 1 mod mi . Computed from
gcd(Mi ,mi) = 1

5 Let Xi ← [ aiMixi . Xi ≡ xi mod mi ; Xi ≡ 0 mod mj,i

6 Return
∑

i Xi mod M
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Back to Crypto: RSA

RSA (Rivest, Shamir, Adleman, 1977) in a nutshell: a family of
“one-way permutations with trapdoor”

I Publicly define P that everyone can compute
I Knowing P, it is “hard” to compute P−1 (even on a single point)
I There is a trapdoor associated w/ P
I Knowing the trapdoor, it is easy to compute P−1 everywhere
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RSA: how?

I Let p, q be two (large) prime numbers
I Let N = pq
I Any 0 < x < N s.t. gcd(x,N) = 1 is invertible in Z/NZ
I Note that knowing x < (Z/NZ)× ⇔ knowing p and q
I Why?

Proposition: order of (Z/NZ)×

Let N be as above, the order of the multiplicative group (Z/NZ)× is
equal to (p − 1)(q − 1). (More generally, it is equal to ϕ(N))

I So for any x ∈ (Z/NZ)×, xk ϕ(N)+1 = x
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RSA: more on how

I Let e be s.t. gcd(e, ϕ(N)) = 1; consider P : x 7→ xe mod N
I P is a permutation over (Z/NZ)× (in fact over Z/NZ)
I Knowing e, N, it is easy to compute P
I Knowing e, ϕ(N), it is easy to compute d s.t. ed ≡ 1

mod ϕ(N)

I Knowing d, xe , it is easy to compute x = xed

⇒We have a permutation with trapdoor, but how good is the
latter?
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RSA: how secure?

Knowing ed = k ϕ(N) + 1, it is easy to find ϕ(N) (admitted)

Knowing N = pq, ϕ(N) = (p − 1)(q − 1), it is easy to find p and q
I ϕ(N) = pq − (p + q) + 1; p + q = −(ϕ(N) − N − 1)
I For any a, b, knowing ab and a + b allows to find a and b
I Consider the polynomial (X − a)(X − b) = X2 − (a + b)X + ab
I ∆ = (a + b)2 − 4ab = (a − b)2

I a = ((a + b) + (a − b))/2

⇒ Knowing, N, e, d, it is easy to factor N, plus:
I e does not (really) depend on N

⇒ If it is easy to compute d from N, e, it is easy to factor N, and
I It is a hard problem to factor N = pq when p, q are large

random primes

BUT it might not be necessary to know d to (efficiently) invert P
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Recap: the RSA permutation family

I Let N = pq, with p, q prime numbers
I Let e be s.t. gcd(e, ϕ(N) = (p − 1)(q − 1)) = 1
I In practice, e is often fixed to 3 = 2 + 1 or 65537 = 216 + 1

I The RSA permutation P over Z/NZ is given by m 7→ me

I The inverse P−1 is given by m 7→ md , where ed ≡ 1
mod ϕ(N)

I N, e are the public parameters defining P
I N, e, d are the private parameters defining P, P−1

Assumption: Given only the public parameters, it is “hard” to invert
P
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RSA for PKC

The objective: use RSA to build
I Public-key (asymmetric) encryption
I Can then be used for asymmetric key exchange

I Public-key signatures

These schemes will need to satisfy the usual security notions
I For encryption: IND-CPA/CCA (“semantic security”)
I For signatures: Existential unforgeability under

chosen-message attacks (EUF-CMA)
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IND-CCA for Public-Key encryption

IND-CCA for (Enc,Dec): An adversary cannot distinguish
Enc(pkC , 0) from Enc(pkC , 1), when given (restricted) oracle
access to Dec(skC , ·) oracle:

1 The Challenger chooses a key pair (pkC , skC), a random bit
b, sends c = Enc(pkC , b), pkC to the Adversary

2 The Adversary may repeatedly submit queries xi , c to the
Challenger

3 The Challenger answers a query with Dec(skC , xi) ∈ {0, 1,⊥}
I This assumes w.l.o.g. that the domain of Enc is {0, 1}, and that

decryption may fail

4 The Adversary tries to guess b
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EUF-CMA for Public-Key signatures

EUF-CMA for (Sig,Ver): An adversary cannot forge a valid
signature σ for a message m such that Ver(pkC , σ,m) succeeds,
when given (restricted) oracle access to Sig(skC , ·):

1 The Challenger chooses a pair (pkC , skC) and sends pkC to
the Adversary

2 The Adversary may repeatedly submit queries mi to the
Challenger

3 The Challenger answers a query with σi = Sig(skC ,mi)

4 The Adversary tries to forge a signature σf for a message
mf ,i mi , s.t. Ver(pkC , σf ,mf ) = >
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RSA Encryption: first attempt

Let P,P−1 be RSA permutations with parameters N, e, d. Define:
I Enc(pk = (N, e),m) = P(m) = (me mod N)

I Dec(sk = (N, e, d), c) = P−1(c) = (cd mod N)

Not randomized⇒ fails miserably, not IND-CCA
I When receiving c = P(b), the Adversary compares with

c0 = P(0), c1 = P(1)
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More issues with raw RSA

I If m, e are small, it may be that me mod N = me (over the
integers)⇒ trivial to invert
I Example: N is of 2048 bits, e = 3, m is a one-bit challenge:

adding 512 random bits of padding before encrypting does not
provide IND-CCA security!

I Consider a broadcast setting where m is encrypted as
ci = m3 mod Ni , i ∈ ~1, 3�. Suppose that ∀i, m < Ni < ci .
Using the CRT, one can reconstruct m3 mod N1N2N3 = m3

and retrieve m.
I Even random padding might not prevent this attack, if too

structured (Hastad, Coppersmith)
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More issues with (semi-)raw RSA

A very useful result for analysing the security of RSA is due to
Coppersmith (1996):

Finding small modular roots of univariate polynomials

Let P be a polynomial of degree k defined modulo N, then there is
an efficient algorithm that computes its roots that are less than
N1/k

I The complexity of the algorithm is polynomial in k (but w/ a
high degree)

I Example application: if c = (2k B + x)3 mod N is an RSA
“ciphertext”, B is known and of size 2/3 log(N), one can find x
of size k < 1/3 log(N) by solving (2k B + X)3 − c = 0

I Other applications: in the previous slide; in slide #28, ...
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Proper RSA-ENC

Let P,P−1 be RSA permutations with parameters N, e, d. Let Pad,
Pad−1 be a padding function and its inverse. Define:

I Enc(pk = (N, e),m) = P(Pad(m)) = (Pad(m)e mod N)

I Dec(sk = (N, e, d), c) = Pad−1(P−1(c)) = Pad−1(cd mod N)

Necessary conditions on Pad:
I It must be invertible
I It must be randomized (with a large-enough number of bits)
I For all m, N, e, Pad(m)e must be larger than N
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OAEP: A good padding function for RSA-ENC

OAEP: Optimal Asymmetric Encryption Padding (Bellare &
Rogaway, 1994):

I Let k = blog(N)c, κ be a security parameter
I Let G : {0, 1}κ → {0, 1}n, H : {0, 1}n → {0, 1}κ be two hash

functions
I Define Pad(x) as (yL ||yR) = x ⊕ G(r)||r ⊕H(x ⊕ G(r)), where

r
$
←− {0, 1}κ

I One has x = Pad−1(yL ||yR) = yL ⊕ G(yR ⊕H(yL ))
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More on OAEP

I OAEP essentially uses a two-round Feistel structure
I To be instantiated, it requires two hash functions H and G

with variable output size
I A possibility is to use a single XOF X : {0, 1}∗ → {0, 1}∗, such

as SHAKE-128
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OAEP: Why does it work (kind of)?

Intuitively, full knowledge of (yL ||yR) is necessary to invert:
I If part of yL is unknown, H(yL ), then G(yR ⊕H(yL )) are

uniformly random
I If part of yR is unknown, G(yR ⊕H(yL )) is uniformly random
I In both cases⇒ x is hidden by a “one-time-pad”

More formally, we would like a reduction of the form:

Breaking RSA-OAEP w. Adv. ε ⇒ Inverting RSA w. Adv. ≈ ε

Exercise: Why would this give us a useful reduction?



RSA 2019–03/04 28/39

OAEP woes

I The original proof that OWP-OAEP is IND-CCA (for any good
OWP) (Bellare & Rogaway, 1994) was incorrect

I Shoup showed that there can be no such proof (2001)
I But when OWP is RSA, then there is a proof (Shoup, 2001;

Fujisaki & al., 2000)!
I Exploits Coppersmith’s algorithm!

I Not all the proofs are tight (e.g. Adv. ε ⇒ Adv. ε2)
I Need large parameters to give a meaningful guarantee
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What about RSA-SIG now?

Let P,P−1 be RSA permutations with parameters N, e, d. Define:
I Sig(sk = (N, e, d),m) = P−1(m)

I Ver(pk = (N, e), σ,m) = P(σ) == m ? > : ⊥

Why this might work:
I Correctness: (md)e ≡ m mod N (P−1 ◦P = P◦P−1 = Id)

I Security: Comes from the hardness of inverting P w/o
knowing d { forging a signature for m⇐ compute P−1(m)
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Raw RSA-SIG: That’s no good!

I If m ≡ m′ mod N, then P−1(m) = P−1(m)⇒ trivial forgeries
I P−1(m)P−1(m′) = (md)(m′d) mod N = (mm′)d

mod N = P−1(mm′)⇒ trivial forgeries over ~0,N − 1�

Again, some padding is necessary!
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Proper RSA-SIG

Let P,P−1 be RSA permutations with parameters N, e, d. Let Pad
be a padding function. Define:

I Sig(sk = (N, e, d),m) = P−1(Pad(m))

I Ver(pk = (N, e), σ,m) = P(σ) == Pad(m) ? > : ⊥

I Pad does not need to be invertible
I It does not need to be randomized (tho this can help)
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What padding functions for RSA-SIG?

Let k = blog(N)c

Full-Domain Hash (FDH) (Bellare & Rogaway; 1993):
I Let H : {0, 1}∗ → {0, 1}k be a hash function, Pad(m) = H(m)

PFDH (Coron, 2002):

I Let H : {0, 1}∗ → {0, 1}k be a hash function, r
$
←− {0, 1}n,

Pad(m) = H(m||r)
I r is not included in the padding per se, but must be transmitted

along

I Both are pretty simple, both provable in the random oracle
model (ROM)

I The proof is tighter for PFDH (“good” security is obtained for
smaller N)

I H can instantiated by a XOF
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Another nice padding: PSS-R

PSS-R (Bellare & Rogaway, 1996):
I Let blog(N)c = k = k0 + k1 + k2, H : {0, 1}k−k1 → {0, 1}k1 ,

G : {0, 1}k1 → {0, 1}k−k1 be two hash functions, r
$
←− {0, 1}k0

I Pad : {0, 1}k2 → {0, 1}k is defined by
Pad(x) = H(x ||r)||(x ||r ⊕ G(H(x ||r)))

I If |x | < k2, PSS-R is invertible (then, the message m does not
need to be transmitted with the signature)

I Otherwise, e.g. compute Pad(x′) where x′ = I(x),
I : {0, 1}∗ → {0, 1}k2 a hash function (then, k2 must be “large
enough”)
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More on PSS-R

I In fact, PSS-R may also be used as padding for RSA-ENC
(Coron & al., 2002)!
I Notice the relative similarity between PSS-R and OAEP

I Both SIG and ENC cases are provably secure in the ROM
I In the specific case of RSA, same as OAEP
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RSA-SIG: Quick implementation comments

I The signer knows N, e, d, and also the factorization p × q of N
I Thanks to the CRT, any computation mod N (in particular

m 7→ md may be done mod p and mod q
I A CRT implementation is more efficient, as multiplying two

numbers does not have a linear cost
I In fact, such CRT decomposition is a useful approach for

general big number arithmetic
I ⇒ “RSA-CRT” implementations
I More efficient, but beware of fault attacks! (That’s a general

warning, tho)
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RSA on the side

One can also use the RSA permutation to define a PRNG (Micali &
Schnorr, 1988). Let (N, e) be RSA parameters, n = log(N), then:

1 Start with a random (secret) seed x0 ∈ ~0, 2r~, 2r � N

2 Step the generator by computing vi = xe
i−1 mod N

3 Extract the next secret state xi from vi = 2k xi + wi , k = n − r

4 Output wi as pseudo-random bits

Question: how small can r be?
I Should be at least n/e, otherwise modular reduction may not

happen
I Micali and Schnorr proposed 2n/e, which seems okay

(Fouque & Zapalowicz, 2014)
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RSA, DH recap, comparison

Roughly, hardness of factoring, DLOG⇒ Asymmetric key
exchange, public-key signatures

I Factoring{ RSA: One-way permutation w/ trapdoor, can be
used for both

I DLOG{ DH, Schnorr/DSA/...: No permutation, but same
functionalities

There are some differences, tho
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Some DLOG schemes properties

I For key exchange, can change the secret every time⇒
“forward secrecy”

I For (the popular schemes for) signatures, good randomness
is essential! (Otherwise it breaks)

I Picking a random exponent is easy
I Picking a good group is not completely staightforward
I Some active attacks are possible
I It is possible to “break entire groups” (e.g. F×p )
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Some RSA properties

I Secrets are fixed⇒ a break can compromise a long history
I No randomness needed for signatures (e.g. basic FDH),

randomness failures don’t reveal the secret
I Generating parameters is somewhat hard
I But all of them are independent (in principle)


