Introduction to cryptology (GBIN8U16)

&
RSA

Pierre Karpman
pierre.karpman@univ-grenoble-alpes. fr
https://www-1jk.imag. fr/membres/Pierre.Karpman/tea.html

2019-03/04

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

Back to basics

Greatest common divisor (GCD)

The greatest common divisor of two numbers a, b € N is the
largest number k, noted gcd(a, b) s.t. a = km, b = km’ for some
m, m eN

Co-primality

Two integers a, b are called coprime if gcd(a, b) = 1

Examples:
~ ged(n, n) = ged(n,0) = nforany n
- gcd(1) =1foranyn
» ged(n, kn) = nforany n
> d(p q) = 1 for any two prime numbers p, q
cd(

p,n)=1foranyn<p

RSA 2019-03/04 2/39

GCD computation

Given two integers, it is:
» Very important to be able to compute their gcd
» Very easy to do so (cool!)
~
A nice recurrence:
» Leta,beN,a>b
> Then k = gcd(a,b) = gcd(b,a mod b)
> Ifa mod b =0, then a = kb = gcd(a,b) = gcd(b,0) = b

» Ifa mod b=r,thena=km=qb+r,b=km'
» = km = gkm’' + r = k(m—-gm’) = r = k divides r too!

RSA 2019-03/04 3/39

Euclid’'s algorithm

The previous recurrence leads to Euclid’s algorithm for gcd
computation

GCD computation (recursive)

Input: a, b < a
Output: ged(a, b)
If b=0,return a
Return gcd(b,a mod b)

In practice, iterative versions may be preferable

RSA 2019-03/04 4/39

Extended Euclid

Let a, b, k = gcd(a, b)

» Then forany u, v € Z,
ua + vb = ukm + vkm’ = k(um + vm’) = kw with
w=um+vm’

» Of particular interest are any Bézout coefficients u, v s.t.
um + vm’ = 1, then we have ua + vb = k = gcd(a, b)

» One can easily compute such u, v by extending Euclid’s
algorithm

RSA 2019-03/04 5/39

Extended Euclid (cont.)

Start from the equalities (1) : 1 xa+ 0x b = a;
(2):0xa+1xb=0>b

Compute the division a = g x b + r, then
(1)-gx(2)=1xa-gxb=r

lterate until r becomes 1 or 0

RSA 2019-03/04 6/39

Example

~> On the board

RSA 2019-03/04 7/39

Extended Euclid w/ Matrices

» Define Ry := b, Ry := a. The sequence of remainders in
Euclid’s algorithm is obtained as (Ri+1) = (0 1)(A)

Rit2 1 —Qi/\Rit
. 0 1 R4 Ro
» Define T; ;= h =T...Tq T,
efine T; (1 —Qi)’ one has (Ri+2) ; 1 °(R1)
G Ry .
» and 0l = Tk—1...T1To R for some k, where G is the gcd
1

ofaand b
» and if one defines M := Tx_4... T1 Ty, one has
G = Mo oRo + My 1Ry, = Bézout coefficients from M

Note: Fast gcd algorithms exist to compute M with less work than
k iterations

RSA 2019-03/04 8/39

Applications: Dividing in Z/NZ

Let a, b € Z/NZ, one wants to compute a/b
» Assuming we know how to multiply, we just need to compute
b—1
~ To do this, compute u, v s.t. ub + vN = 1 = gcd(b, N)
> If gcd(b, N) > 1, b is not invertible mod N (why?)
» Thenub=1-vN=ub=1 mod N=u=>b"

Exercise: use this algorithm to prove that Z/NZ is a field iff N is
prime

RSA 2019-03/04 9/39

Digression: Little Fermat Theorem

Another possibility to find the inverse of a € Z/NZ when N is prime
is to use the Little Fermat Theorem (LFT)

Little Fermat Theorem

Let p be a prime number, then for any 0 < a < p, one has aP~! = 1
mod p.

RSA 2019-03/04 10/39

Applications: Chinese Remainder Theorem

The (simple) Chinese Remainder Theorem (CRT)

Let my, ..., mk be k pairwise coprime (positive) integers
(Vi,jged(m;, m;) = 1) and xq, ..., Xk any integers (for simplicity s.t.
0 < x; < m;), then there is a unique x mod [];m; s.t. x = x;

mod m;forall1>i> k

» Given x, mj, it is easy to compute x; = x mod mj;

» The inverse problem is in fact also easy, using the extended
Euclid algorithm

Note: This theorem is very useful! (E.g. used in the admitted
Pohlig-Hellman algorithm; also nice to speed-up modular/big
number arithmetic)

RSA 2019-03/04 11/39

CRT: how?

CRT reconstruction (Lagrange basis)

Input: my,..., Mg, X1,..., Xk

Output: The unique 0 > x < [[m; s.t. x = x; mod m;
Let M — []; m;
Forall1>i>k
M; < M/m;

Let a; be such that aiM; =1 mod m; > Computed from
ng(M,', m,-) =1
Let X,' <« a,-M;x,- > X,' = Xj mod m;j; X,' =0 mod Mz

@ Return }; X; mod M

RSA 2019-03/04 12/39

Back to Crypto: RSA

RSA (Rivest, Shamir, Adleman, 1977) in a nutshell: a family of
“one-way permutations with trapdoor”

» Publicly define # that everyone can compute

~ Knowing P, it is “hard” to compute £~' (even on a single point)
» There is a trapdoor associated w/ P

~ Knowing the trapdoor, it is easy to compute £~ everywhere

RSA 2019-03/04 13/39

RSA: how?

» Let p, g be two (large) prime numbers
» Let N = pq
> Any 0 < x < N s.t. gcd(x, N) = 1 is invertible in Z/NZ

> Note that knowing x ¢ (Z/NZ)* < knowing p and q
> Why?

Proposition: order of (Z/NZ)*

Let N be as above, the order of the multiplicative group (Z/NZ)* is
equal to (p — 1)(g — 1). (More generally, it is equal to ¢(N))

- So for any x € (Z/NZ)*, xk¢#N)+1 = x

RSA 2019-03/04 14/39

RSA: more on how

v

Let e be s.t. gcd(e, ¢(N)) = 1; consider £ : x — x¢ mod N
~ P is a permutation over (Z/NZ)* (in fact over Z/NZ)
» Knowing e, N, it is easy to compute

> Knowing e, ¢(N), it is easy to compute d s.t. ed = 1
mod ¢(N)

Knowing d, x®, it is easy to compute x = x°9

v

= We have a permutation with trapdoor, but how good is the
latter?

RSA 2019-03/04 15/39

RSA: how secure?

Knowing ed = k ¢(N) + 1, it is easy to find ¢(N) (admitted)
Knowing N = pg, ¢(N) = (p—1)(qg— 1), itis easy to find p and q
~¢(N)=pg-(p+q +1p+qg=—-(p(N)-N-1)
» For any a, b, knowing ab and a + b allows to find a and b
> Consider the polynomial (X —a)(X —b) = X2 - (a+b)X + ab
» A= (a+b)>-4ab=(a-b)?
» a=((a+b)+(a-b))/2
= Knowing, N, e, d, it is easy to factor N, plus:
» e does not (really) depend on N
= If it is easy to compute d from N, e, it is easy to factor N, and

> Itis a hard problem to factor N = pq when p, g are large
random primes

BUT it might not be necessary to know d to (efficiently) invert £

RSA 2019-03/04 16/39

Recap: the RSA permutation family

» Let N = pq, with p, g prime numbers
Let e be s.t. gcd(e,¢(N) = (p-1)(g—1)) = 1
> In practice, e is often fixed to 3 = 2 + 1 or 65537 = 216 + 1

v

v

The RSA permutation # over Z/NZ is given by m +— m®

- The inverse P! is given by m — m?, where ed = 1
mod ¢(N)

> N, e are the public parameters defining
- N, e, d are the private parameters defining P, P~

Assumption: Given only the public parameters, it is “hard” to invert
p

RSA 2019-03/04 17/39

RSA for PKC

The objective: use RSA to build
» Public-key (asymmetric) encryption
> Can then be used for asymmetric key exchange

» Public-key signatures

These schemes will need to satisfy the usual security notions
» For encryption: IND-CPA/CCA (“semantic security”)

» For signatures: Existential unforgeability under
chosen-message attacks (EUF-CMA)

RSA 2019-03/04 18/39

IND-CCA for Public-Key encryption

IND-CCA for (Enc, Dec): An adversary cannot distinguish
Enc(pkc, 0) from Enc(pkc, 1), when given (restricted) oracle
access to Dec(skg, -) oracle:
The Challenger chooses a key pair (pkc, skc), a random bit
b, sends ¢ = Enc(pkc, b), pkc to the Adversary
1 The Adversary may repeatedly submit queries x; # ¢ to the
Challenger
El The Challenger answers a query with Dec(ske, X;) € {0, 1, L}

> This assumes w.l.0.g. that the domain of Enc is {0, 1}, and that
decryption may fail

The Adversary tries to guess b

RSA 2019-03/04 19/39

EUF-CMA for Public-Key signatures

EUF-CMA for (Sig, Ver): An adversary cannot forge a valid
signature o for a message m such that Ver(pkc, o, m) succeeds,
when given (restricted) oracle access to Sig(ske, -):
The Challenger chooses a pair (pkc, skc) and sends pkc to
the Adversary
B The Adversary may repeatedly submit queries m; to the
Challenger
El The Challenger answers a query with o; = Sig(skc, m;)
The Adversary tries to forge a signature o for a message
ms #; m;, s.t. Ver(pkc,os,ms) =T

RSA 2019-03/04 20/39

RSA Encryption: first attempt

Let #,~! be RSA permutations with parameters N, e, d. Define:
» Enc(pk = (N,e),m) = P(m) = (m® mod N)
» Dec(sk = (N,e,d),c) =P '(c) = (¢? mod N)

Not randomized = fails miserably, not IND-CCA

~ When receiving ¢ = P(b), the Adversary compares with
Co = 7)(0), Cl1 = P('I)

RSA 2019-03/04 21/39

More issues with raw RSA

> If m, e are small, it may be that m® mod N = m® (over the
integers) = trivial to invert
> Example: N is of 2048 bits, e = 3, m is a one-bit challenge:
adding 512 random bits of padding before encrypting does not
provide IND-CCA security!

» Consider a broadcast setting where m is encrypted as
ci=m® mod N;, i€ [1,3]. Suppose that ¥i, m < N; < c;.
Using the CRT, one can reconstruct m® mod NyNaN3 = m®
and retrieve m.

» Even random padding might not prevent this attack, if too
structured (Hastad, Coppersmith)

RSA 2019-03/04 22/39

More issues with (semi-)raw RSA

A very useful result for analysing the security of RSA is due to
Coppersmith (1996):

Finding small modular roots of univariate polynomials

Let P be a polynomial of degree k defined modulo N, then there is
an efficient algorithm that computes its roots that are less than
N1 /k

» The complexity of the algorithm is polynomial in k (but w/ a
high degree)

- Example application: if ¢ = (2KB + x)® mod N is an RSA
“ciphertext”, B is known and of size 2/3 log(N), one can find x
of size k < 1/3log(N) by solving (2B + X)3-c =0

» Other applications: in the previous slide; in slide #28, ...

RSA 2019-03/04 23/39

Proper RSA-ENC

Let #,2~! be RSA permutations with parameters N, e, d. Let Pad,
Pad™' be a padding function and its inverse. Define:

> Enc(pk = (N, e),m) = P(Pad(m)) = (Pad(m)® mod N)
~ Dec(sk = (N, e,d),c) = Pad™'(7"'(c)) = Pad™"(c? mod N)

Necessary conditions on Pad:
> It must be invertible
» It must be randomized (with a large-enough number of bits)
> For all m, N, e, Pad(m)® must be larger than N

RSA 2019-03/04 24/39

OAEP: A good padding function for RSA-ENC

OAEP: Optimal Asymmetric Encryption Padding (Bellare &
Rogaway, 1994):

» Let k = |log(N)], x be a security parameter

» LetG:{0,1} — {0,1}", H : {0,1}" — {0, 1}¥ be two hash
functions

~ Define Pad(x) as (yLllyr) = x @ G(r)llr & H(x & G(r)), where
re {0, 1)K
- One has x = Pad™'(y.llyr) = y. ® G(yr ® H(yL))

RSA 2019-03/04 25/39

More on OAEP

» OAEP essentially uses a two-round Feistel structure

» To be instantiated, it requires two hash functions H and G
with variable output size

» A possibility is to use a single XOF X : {0,1}* — {0, 1}, such
as SHAKE-128

RSA 2019-03/04 26/39

OAEP: Why does it work (kind of)?

Intuitively, full knowledge of (y.|lyr) is necessary to invert:

~ If part of y; is unknown, H(y.), then G(yr ® H(yL)) are
uniformly random

~ If part of yg is unknown, G(yr ® H(yL)) is uniformly random
> In both cases = x is hidden by a “one-time-pad”
More formally, we would like a reduction of the form:

Breaking RSA-OAEP w. Adv. € = Inverting RSAw. Adv. ~ ¢

Exercise: Why would this give us a useful reduction?

RSA 2019-03/04 27/39

OAEP woes

v

v

v

The original proof that OWP-OAEP is IND-CCA (for any good
OWP) (Bellare & Rogaway, 1994) was incorrect
Shoup showed that there can be no such proof (2001)

But when OWP is RSA, then there is a proof (Shoup, 2001;
Fujisaki & al., 2000)!

> Exploits Coppersmith’s algorithm!
Not all the proofs are tight (e.g. Adv. € = Adv. €°)
> Need large parameters to give a meaningful guarantee

RSA 2019-03/04 28/39

What about RSA-SIG now?

Let 2,9~ be RSA permutations with parameters N, e, d. Define:
- Sig(sk = (N, e,d),m) =P~ (m)
> Ver(pk = (N,e),oc,m) =P(c)==m? T : L

Why this might work:
- Correctness: (m?)*=m mod N (P 'oP =PoP™! =1d)
» Security: Comes from the hardness of inverting £ w/o
knowing d ~» forging a signature for m < compute £~ (m)

RSA 2019-03/04 29/39

Raw RSA-SIG: That’s no good!

~ lfm=m mod N, then P~ (m) = P~"(m) = trivial forgeries
- P m) P (M) = (m?)(m'?) mod N = (mm’)¢
mod N = P~'(mm’) = trivial forgeries over [0, N — 1]

Again, some padding is necessary!

RSA 2019-03/04 30/39

Proper RSA-SIG

Let #,2~! be RSA permutations with parameters N, e, d. Let Pad
be a padding function. Define:

- Sig(sk = (N, e,d), m) = P~ (Pad(m))
> Ver(pk = (N,e),o,m) =P(o0)==Pad(m)? T : L

» Pad does not need to be invertible
» It does not need to be randomized (tho this can help)

RSA 2019-03/04 31/39

What padding functions for RSA-SIG?

Let k = [log(N)]
Full-Domain Hash (FDH) (Bellare & Rogaway; 1993):

~ Let H : {0,1}* — {0,1}¥ be a hash function, Pad(m) = H(m)
PFDH (Coron, 2002):

- Let H : {0,1}* — {0, 1}¥ be a hash function, r < {0,1}",

Pad(m) = H(m||r)
> ris notincluded in the padding per se, but must be transmitted
along

» Both are pretty simple, both provable in the random oracle
model (ROM)

» The proof is tighter for PFDH (“good” security is obtained for
smaller N)

» H can instantiated by a XOF

RSA 2019-03/04 32/39

Another nice padding: PSS-R

PSS-R (Bellare & Rogaway, 1996):
» Let Llog(N)] = k = ko + ki + ko, H : {0, 1}k — {0, 1}k,
G : {0,115 > {0, 1}~k be two hash functions, r < {0, 1}
» Pad : {0, 1} — {0, 1} is defined by
Pad(x) = H(x|IN(x|lr & G(H(xIIr)))
» If x| < ko, PSS-R is invertible (then, the message m does not
need to be transmitted with the signature)

» Otherwise, e.g. compute Pad(x”) where x” = 7(x),
7 :{0,1}* > {0, 1}*2 a hash function (then, ko must be “large
enough”)

RSA 2019-03/04 33/39

More on PSS-R

» In fact, PSS-R may also be used as padding for RSA-ENC
(Coron & al., 2002)!

> Notice the relative similarity between PSS-R and OAEP
» Both SIG and ENC cases are provably secure in the ROM
> In the specific case of RSA, same as OAEP

RSA 2019-03/04 34/39

RSA-SIG: Quick implementation comments

v

v

v

v

v

The signer knows N, e, d, and also the factorization p x g of N

Thanks to the CRT, any computation mod N (in particular
m — m9 may be done mod p and mod q

A CRT implementation is more efficient, as multiplying two
numbers does not have a linear cost

In fact, such CRT decomposition is a useful approach for
general big number arithmetic

= “RSA-CRT” implementations

> More efficient, but beware of fault attacks! (That’s a general
warning, tho)

RSA 2019-03/04 35/39

RSA on the side

One can also use the RSA permutation to define a PRNG (Micali &
Schnorr, 1988). Let (N, e) be RSA parameters, n = log(N), then:

Start with a random (secret) seed xg € [0,2'[[, 2" < N
& Step the generator by computing vi = x?, mod N
El Extract the next secret state x; from v, = 2Kx; + wi, k = n—r
Output w; as pseudo-random bits
Question: how small can r be?

» Should be at least n/e, otherwise modular reduction may not
happen

» Micali and Schnorr proposed 2n/e, which seems okay
(Fouque & Zapalowicz, 2014)

RSA 2019-03/04 36/39

RSA, DH recap, comparison

Roughly, hardness of factoring, DLOG = Asymmetric key
exchange, public-key signatures

» Factoring ~» RSA: One-way permutation w/ trapdoor, can be
used for both

» DLOG ~» DH, Schnorr/DSA/...: No permutation, but same
functionalities

There are some differences, tho

RSA 2019-03/04 37/39

Some DLOG schemes properties

v

For key exchange, can change the secret every time =
“forward secrecy”

For (the popular schemes for) signatures, good randomness
is essential! (Otherwise it breaks)

Picking a random exponent is easy

Picking a good group is not completely staightforward
Some active attacks are possible

It is possible to “break entire groups” (e.g. Fj)

RSA 2019-03/04 38/39

Some RSA properties

v

v

v

v

Secrets are fixed = a break can compromise a long history

No randomness needed for signatures (e.g. basic FDH),
randomness failures don’t reveal the secret

Generating parameters is somewhat hard
But all of them are independent (in principle)

RSA 2019-03/04 39/39

