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Back to basics

Greatest common divisor (GCD)

The greatest common divisor of two numbers a, b € N is the
largest number k, noted gcd(a, b) s.t. a = km, b = km’ for some
m, m eN

Co-primality

Two integers a, b are called coprime if gcd(a, b) = 1

Examples:
~ ged(n, n) = ged(n,0) = nforany n
- gcd( 1) =1foranyn
» ged(n, kn) = nforany n
> d(p q) = 1 for any two prime numbers p, q
cd(

p,n)=1foranyn<p
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GCD computation

Given two integers, it is:
» Very important to be able to compute their gcd
» Very easy to do so (cool!)
~
A nice recurrence:
» Leta,beN,a>b
> Then k = gcd(a,b) = gcd(b,a mod b)
> Ifa mod b =0, then a = kb = gcd(a,b) = gcd(b,0) = b

» Ifa mod b=r,thena=km=qb+r,b=km'
» = km = gkm’' + r = k(m—-gm’) = r = k divides r too!
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Euclid’'s algorithm

The previous recurrence leads to Euclid’s algorithm for gcd
computation

GCD computation (recursive)

Input: a, b < a
Output: ged(a, b)
If b=0,return a
Return gcd(b,a mod b)

In practice, iterative versions may be preferable
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Extended Euclid

Let a, b, k = gcd(a, b)

» Then forany u, v € Z,
ua + vb = ukm + vkm’ = k(um + vm’) = kw with
w=um+vm’

» Of particular interest are any Bézout coefficients u, v s.t.
um + vm’ = 1, then we have ua + vb = k = gcd(a, b)

» One can easily compute such u, v by extending Euclid’s
algorithm

RSA 2019-03/04 5/39



Extended Euclid (cont.)

Start from the equalities (1) : 1 xa+ 0x b = a;
(2):0xa+1xb=0>b

Compute the division a = g x b + r, then
(1)-gx(2)=1xa-gxb=r

lterate until r becomes 1 or 0
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Example

~> On the board
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Extended Euclid w/ Matrices

» Define Ry := b, Ry := a. The sequence of remainders in
Euclid’s algorithm is obtained as (Ri+1) = (0 1 )( A )

Rit2 1 —Qi/\Rit
. 0 1 R4 Ro
» Define T; ;= h =T...Tq T,
efine T; (1 —Qi)’ one has (Ri+2) ; 1 °(R1)
G Ry .
» and 0l = Tk—1...T1To R for some k, where G is the gcd
1

ofaand b
» and if one defines M := Tx_4... T1 Ty, one has
G = Mo oRo + My 1Ry, = Bézout coefficients from M

Note: Fast gcd algorithms exist to compute M with less work than
k iterations
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Applications: Dividing in Z/NZ

Let a, b € Z/NZ, one wants to compute a/b
» Assuming we know how to multiply, we just need to compute
b—1
~ To do this, compute u, v s.t. ub + vN = 1 = gcd(b, N)
> If gcd(b, N) > 1, b is not invertible mod N (why?)
» Thenub=1-vN=ub=1 mod N=u=>b"

Exercise: use this algorithm to prove that Z/NZ is a field iff N is
prime
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Digression: Little Fermat Theorem

Another possibility to find the inverse of a € Z/NZ when N is prime
is to use the Little Fermat Theorem (LFT)

Little Fermat Theorem

Let p be a prime number, then for any 0 < a < p, one has aP~! = 1
mod p.
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Applications: Chinese Remainder Theorem

The (simple) Chinese Remainder Theorem (CRT)

Let my, ..., mk be k pairwise coprime (positive) integers
(Vi,jged(m;, m;) = 1) and xq, ..., Xk any integers (for simplicity s.t.
0 < x; < m;), then there is a unique x mod [];m; s.t. x = x;

mod m;forall1>i> k

» Given x, mj, it is easy to compute x; = x mod mj;

» The inverse problem is in fact also easy, using the extended
Euclid algorithm

Note: This theorem is very useful! (E.g. used in the admitted
Pohlig-Hellman algorithm; also nice to speed-up modular/big
number arithmetic)
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CRT: how?

CRT reconstruction (Lagrange basis)

Input: my,..., Mg, X1,..., Xk

Output: The unique 0 > x < [[ m; s.t. x = x; mod m;
Let M — []; m;
Forall1>i>k
M; < M/m;

Let a; be such that aiM; =1 mod m; > Computed from
ng(M,', m,-) =1
Let X,' <« a,-M;x,- > X,' = Xj mod m;j; X,' =0 mod Mz

@ Return }; X; mod M
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Back to Crypto: RSA

RSA (Rivest, Shamir, Adleman, 1977) in a nutshell: a family of
“one-way permutations with trapdoor”

» Publicly define # that everyone can compute

~ Knowing P, it is “hard” to compute £~' (even on a single point)
» There is a trapdoor associated w/ P

~ Knowing the trapdoor, it is easy to compute £~ everywhere
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RSA: how?

» Let p, g be two (large) prime numbers
» Let N = pq
> Any 0 < x < N s.t. gcd(x, N) = 1 is invertible in Z/NZ

> Note that knowing x ¢ (Z/NZ)* < knowing p and q
> Why?

Proposition: order of (Z/NZ)*

Let N be as above, the order of the multiplicative group (Z/NZ)* is
equal to (p — 1)(g — 1). (More generally, it is equal to ¢(N))

- So for any x € (Z/NZ)*, xk¢#N)+1 = x
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RSA: more on how

v

Let e be s.t. gcd(e, ¢(N)) = 1; consider £ : x — x¢ mod N
~ P is a permutation over (Z/NZ)* (in fact over Z/NZ)
» Knowing e, N, it is easy to compute

> Knowing e, ¢(N), it is easy to compute d s.t. ed = 1
mod ¢(N)

Knowing d, x®, it is easy to compute x = x°9

v

= We have a permutation with trapdoor, but how good is the
latter?
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RSA: how secure?

Knowing ed = k ¢(N) + 1, it is easy to find ¢(N) (admitted)
Knowing N = pg, ¢(N) = (p—1)(qg— 1), itis easy to find p and q
~¢(N)=pg-(p+q +1p+qg=—-(p(N)-N-1)
» For any a, b, knowing ab and a + b allows to find a and b
> Consider the polynomial (X —a)(X —b) = X2 - (a+b)X + ab
» A= (a+b)>-4ab=(a-b)?
» a=((a+b)+(a-b))/2
= Knowing, N, e, d, it is easy to factor N, plus:
» e does not (really) depend on N
= If it is easy to compute d from N, e, it is easy to factor N, and

> Itis a hard problem to factor N = pq when p, g are large
random primes

BUT it might not be necessary to know d to (efficiently) invert £
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Recap: the RSA permutation family

» Let N = pq, with p, g prime numbers
Let e be s.t. gcd(e,¢(N) = (p-1)(g—1)) = 1
> In practice, e is often fixed to 3 = 2 + 1 or 65537 = 216 + 1

v

v

The RSA permutation # over Z/NZ is given by m +— m®

- The inverse P! is given by m — m?, where ed = 1
mod ¢(N)

> N, e are the public parameters defining
- N, e, d are the private parameters defining P, P~

Assumption: Given only the public parameters, it is “hard” to invert
p
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RSA for PKC

The objective: use RSA to build
» Public-key (asymmetric) encryption
> Can then be used for asymmetric key exchange

» Public-key signatures

These schemes will need to satisfy the usual security notions
» For encryption: IND-CPA/CCA (“semantic security”)

» For signatures: Existential unforgeability under
chosen-message attacks (EUF-CMA)
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IND-CCA for Public-Key encryption

IND-CCA for (Enc, Dec): An adversary cannot distinguish
Enc(pkc, 0) from Enc(pkc, 1), when given (restricted) oracle
access to Dec(skg, -) oracle:
The Challenger chooses a key pair (pkc, skc), a random bit
b, sends ¢ = Enc(pkc, b), pkc to the Adversary
1 The Adversary may repeatedly submit queries x; # ¢ to the
Challenger
El The Challenger answers a query with Dec(ske, X;) € {0, 1, L}

> This assumes w.l.0.g. that the domain of Enc is {0, 1}, and that
decryption may fail

The Adversary tries to guess b
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EUF-CMA for Public-Key signatures

EUF-CMA for (Sig, Ver): An adversary cannot forge a valid
signature o for a message m such that Ver(pkc, o, m) succeeds,
when given (restricted) oracle access to Sig(ske, -):
The Challenger chooses a pair (pkc, skc) and sends pkc to
the Adversary
B The Adversary may repeatedly submit queries m; to the
Challenger
El The Challenger answers a query with o; = Sig(skc, m;)
The Adversary tries to forge a signature o for a message
ms #; m;, s.t. Ver(pkc,os,ms) =T
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RSA Encryption: first attempt

Let #,~! be RSA permutations with parameters N, e, d. Define:
» Enc(pk = (N,e),m) = P(m) = (m® mod N)
» Dec(sk = (N,e,d),c) =P '(c) = (¢? mod N)

Not randomized = fails miserably, not IND-CCA

~ When receiving ¢ = P(b), the Adversary compares with
Co = 7)(0), Cl1 = P('I)
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More issues with raw RSA

> If m, e are small, it may be that m® mod N = m® (over the
integers) = trivial to invert
> Example: N is of 2048 bits, e = 3, m is a one-bit challenge:
adding 512 random bits of padding before encrypting does not
provide IND-CCA security!

» Consider a broadcast setting where m is encrypted as
ci=m® mod N;, i€ [1,3]. Suppose that ¥i, m < N; < c;.
Using the CRT, one can reconstruct m® mod NyNaN3 = m®
and retrieve m.

» Even random padding might not prevent this attack, if too
structured (Hastad, Coppersmith)
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More issues with (semi-)raw RSA

A very useful result for analysing the security of RSA is due to
Coppersmith (1996):

Finding small modular roots of univariate polynomials

Let P be a polynomial of degree k defined modulo N, then there is
an efficient algorithm that computes its roots that are less than
N1 /k

» The complexity of the algorithm is polynomial in k (but w/ a
high degree)

- Example application: if ¢ = (2KB + x)® mod N is an RSA
“ciphertext”, B is known and of size 2/3 log(N), one can find x
of size k < 1/3log(N) by solving (2B + X)3-c =0

» Other applications: in the previous slide; in slide #28, ...
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Proper RSA-ENC

Let #,2~! be RSA permutations with parameters N, e, d. Let Pad,
Pad™' be a padding function and its inverse. Define:

> Enc(pk = (N, e),m) = P(Pad(m)) = (Pad(m)® mod N)
~ Dec(sk = (N, e,d),c) = Pad™'(7"'(c)) = Pad™"(c? mod N)

Necessary conditions on Pad:
> It must be invertible
» It must be randomized (with a large-enough number of bits)
> For all m, N, e, Pad(m)® must be larger than N
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OAEP: A good padding function for RSA-ENC

OAEP: Optimal Asymmetric Encryption Padding (Bellare &
Rogaway, 1994):

» Let k = |log(N)], x be a security parameter

» LetG:{0,1} — {0,1}", H : {0,1}" — {0, 1}¥ be two hash
functions

~ Define Pad(x) as (yLllyr) = x @ G(r)llr & H(x & G(r)), where
re {0, 1)K
- One has x = Pad™'(y.llyr) = y. ® G(yr ® H(yL))
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More on OAEP

» OAEP essentially uses a two-round Feistel structure

» To be instantiated, it requires two hash functions H and G
with variable output size

» A possibility is to use a single XOF X : {0,1}* — {0, 1}, such
as SHAKE-128
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OAEP: Why does it work (kind of)?

Intuitively, full knowledge of (y.|lyr) is necessary to invert:

~ If part of y; is unknown, H(y. ), then G(yr ® H(yL)) are
uniformly random

~ If part of yg is unknown, G(yr ® H(yL)) is uniformly random
> In both cases = x is hidden by a “one-time-pad”
More formally, we would like a reduction of the form:

Breaking RSA-OAEP w. Adv. € = Inverting RSAw. Adv. ~ ¢

Exercise: Why would this give us a useful reduction?
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OAEP woes

v

v

v

The original proof that OWP-OAEP is IND-CCA (for any good
OWP) (Bellare & Rogaway, 1994) was incorrect
Shoup showed that there can be no such proof (2001)

But when OWP is RSA, then there is a proof (Shoup, 2001;
Fujisaki & al., 2000)!

> Exploits Coppersmith’s algorithm!
Not all the proofs are tight (e.g. Adv. € = Adv. €°)
> Need large parameters to give a meaningful guarantee
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What about RSA-SIG now?

Let 2,9~ be RSA permutations with parameters N, e, d. Define:
- Sig(sk = (N, e,d),m) =P~ (m)
> Ver(pk = (N,e),oc,m) =P(c)==m? T : L

Why this might work:
- Correctness: (m?)*=m mod N (P 'oP =PoP™! =1d)
» Security: Comes from the hardness of inverting £ w/o
knowing d ~» forging a signature for m < compute £~ (m)
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Raw RSA-SIG: That’s no good!

~ lfm=m mod N, then P~ (m) = P~"(m) = trivial forgeries
- P m) P (M) = (m?)(m'?) mod N = (mm’)¢
mod N = P~'(mm’) = trivial forgeries over [0, N — 1]

Again, some padding is necessary!
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Proper RSA-SIG

Let #,2~! be RSA permutations with parameters N, e, d. Let Pad
be a padding function. Define:

- Sig(sk = (N, e,d), m) = P~ (Pad(m))
> Ver(pk = (N,e),o,m) =P(o0)==Pad(m)? T : L

» Pad does not need to be invertible
» It does not need to be randomized (tho this can help)
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What padding functions for RSA-SIG?

Let k = [log(N)]
Full-Domain Hash (FDH) (Bellare & Rogaway; 1993):

~ Let H : {0,1}* — {0,1}¥ be a hash function, Pad(m) = H(m)
PFDH (Coron, 2002):

- Let H : {0,1}* — {0, 1}¥ be a hash function, r < {0,1}",

Pad(m) = H(m||r)
> ris notincluded in the padding per se, but must be transmitted
along

» Both are pretty simple, both provable in the random oracle
model (ROM)

» The proof is tighter for PFDH (“good” security is obtained for
smaller N)

» H can instantiated by a XOF
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Another nice padding: PSS-R

PSS-R (Bellare & Rogaway, 1996):
» Let Llog(N)] = k = ko + ki + ko, H : {0, 1}k — {0, 1}k,
G : {0,115 > {0, 1}~k be two hash functions, r < {0, 1}
» Pad : {0, 1} — {0, 1} is defined by
Pad(x) = H(x|IN(x|lr & G(H(xIIr)))
» If x| < ko, PSS-R is invertible (then, the message m does not
need to be transmitted with the signature)

» Otherwise, e.g. compute Pad(x”) where x” = 7(x),
7 :{0,1}* > {0, 1}*2 a hash function (then, ko must be “large
enough”)
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More on PSS-R

» In fact, PSS-R may also be used as padding for RSA-ENC
(Coron & al., 2002)!

> Notice the relative similarity between PSS-R and OAEP
» Both SIG and ENC cases are provably secure in the ROM
> In the specific case of RSA, same as OAEP
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RSA-SIG: Quick implementation comments

v

v

v

v

v

The signer knows N, e, d, and also the factorization p x g of N

Thanks to the CRT, any computation mod N (in particular
m — m9 may be done mod p and mod q

A CRT implementation is more efficient, as multiplying two
numbers does not have a linear cost

In fact, such CRT decomposition is a useful approach for
general big number arithmetic

= “RSA-CRT” implementations

> More efficient, but beware of fault attacks! (That’s a general
warning, tho)
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RSA on the side

One can also use the RSA permutation to define a PRNG (Micali &
Schnorr, 1988). Let (N, e) be RSA parameters, n = log(N), then:

Start with a random (secret) seed xg € [0,2'[[, 2" < N
& Step the generator by computing vi = x?, mod N
El Extract the next secret state x; from v, = 2Kx; + wi, k = n—r
Output w; as pseudo-random bits
Question: how small can r be?

» Should be at least n/e, otherwise modular reduction may not
happen

» Micali and Schnorr proposed 2n/e, which seems okay
(Fouque & Zapalowicz, 2014)
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RSA, DH recap, comparison

Roughly, hardness of factoring, DLOG = Asymmetric key
exchange, public-key signatures

» Factoring ~» RSA: One-way permutation w/ trapdoor, can be
used for both

» DLOG ~» DH, Schnorr/DSA/...: No permutation, but same
functionalities

There are some differences, tho
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Some DLOG schemes properties

v

For key exchange, can change the secret every time =
“forward secrecy”

For (the popular schemes for) signatures, good randomness
is essential! (Otherwise it breaks)

Picking a random exponent is easy

Picking a good group is not completely staightforward
Some active attacks are possible

It is possible to “break entire groups” (e.g. Fj)
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Some RSA properties

v

v

v

v

Secrets are fixed = a break can compromise a long history

No randomness needed for signatures (e.g. basic FDH),
randomness failures don’t reveal the secret

Generating parameters is somewhat hard
But all of them are independent (in principle)
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