Introduction to cryptology (GBIN8U16)

RSA

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2019-03/04

Back to basics

Greatest common divisor (GCD)

The greatest common divisor of two numbers $a, b \in \mathbb{N}$ is the largest number k, noted $\operatorname{gcd}(a, b)$ s.t. $a=k m, b=k m^{\prime}$ for some $m, m^{\prime} \in \mathbb{N}$

Co-primality

Two integers a, b are called coprime if $\operatorname{gcd}(a, b)=1$
Examples:

- $\operatorname{gcd}(n, n)=\operatorname{gcd}(n, 0)=n$ for any n
- $\operatorname{gcd}(n, 1)=1$ for any n
- $\operatorname{gcd}(n, k n)=n$ for any n
- $\operatorname{gcd}(p, q)=1$ for any two prime numbers p, q
- $\operatorname{gcd}(p, n)=1$ for any $n<p$

GCD computation

Given two integers, it is:

- Very important to be able to compute their gcd
- Very easy to do so (cool!)

A nice recurrence:

- Let $a, b \in \mathbb{N}, a>b$
- Then $k=\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$
- If $a \bmod b=0$, then $a=k b \Rightarrow \operatorname{gcd}(a, b)=\operatorname{gcd}(b, 0)=b$
- If $a \bmod b=r$, then $a=k m=q b+r, b=k m^{\prime}$
- $\Rightarrow k m=q k m^{\prime}+r \Rightarrow k\left(m-q m^{\prime}\right)=r \Rightarrow k$ divides r too!

Euclid's algorithm

The previous recurrence leads to Euclid's algorithm for gcd computation

GCD computation (recursive)

Input: $a, b<a$
Output: $\operatorname{gcd}(a, b)$
1 If $b=0$, return a
2 Return $\operatorname{gcd}(b, a \bmod b)$

In practice, iterative versions may be preferable

Extended Euclid

Let $a, b, k=\operatorname{gcd}(a, b)$

- Then for any $u, v \in \mathbb{Z}$, $u a+v b=u k m+v k m^{\prime}=k\left(u m+v m^{\prime}\right)=k w$ with $w=u m+v m^{\prime}$
- Of particular interest are any Bézout coefficients u, v s.t. $u m+v m^{\prime}=1$, then we have $u a+v b=k=\operatorname{gcd}(a, b)$
- One can easily compute such u, v by extending Euclid's algorithm

Extended Euclid (cont.)

1 Start from the equalities (1): $1 \times a+0 \times b=a$; (2): $0 \times a+1 \times b=b$

2 Compute the division $a=q \times b+r$, then (1) $-q \times(2)=1 \times a-q \times b=r$

3 Iterate until r becomes 1 or 0
\leadsto On the board

Extended Euclid w/ Matrices

- Define $R_{0}:=b, R_{1}:=a$. The sequence of remainders in Euclid's algorithm is obtained as $\binom{R_{i+1}}{R_{i+2}}=\left(\begin{array}{cc}0 & 1 \\ 1 & -Q_{i}\end{array}\right)\binom{R_{i}}{R_{i+1}}$
- Define $T_{i}:=\left(\begin{array}{cc}0 & 1 \\ 1 & -Q_{i}\end{array}\right)$, one has $\binom{R_{i+1}}{R_{i+2}}=T_{i} \ldots T_{1} T_{0}\binom{R_{0}}{R_{1}}$
- and $\binom{G}{0}=T_{k-1} \ldots T_{1} T_{0}\binom{R_{0}}{R_{1}}$ for some k, where G is the gcd of a and b
- and if one defines $M:=T_{k-1} \ldots T_{1} T_{0}$, one has
$G=M_{0,0} R_{0}+M_{0,1} R_{1} \Rightarrow$ Bézout coefficients from M
Note: Fast gcd algorithms exist to compute M with less work than k iterations

Applications: Dividing in $\mathbb{Z} / N \mathbb{Z}$

Let $a, b \in \mathbb{Z} / N \mathbb{Z}$, one wants to compute a / b

- Assuming we know how to multiply, we just need to compute b^{-1}
- To do this, compute u, v s.t. $u b+v N=1=\operatorname{gcd}(b, N)$
- If $\operatorname{gcd}(b, N)>1, b$ is not invertible $\bmod N$ (why?)
- Then $u b=1-v N \Rightarrow u b \equiv 1 \bmod N \Rightarrow u=b^{-1}$

Exercise: use this algorithm to prove that $\mathbb{Z} / N \mathbb{Z}$ is a field iff N is prime

Digression: Little Fermat Theorem

Another possibility to find the inverse of $a \in \mathbb{Z} / N \mathbb{Z}$ when N is prime is to use the Little Fermat Theorem (LFT)

Little Fermat Theorem

Let p be a prime number, then for any $0<a<p$, one has $a^{p-1} \equiv 1$ $\bmod p$.

Applications: Chinese Remainder Theorem

The (simple) Chinese Remainder Theorem (CRT)

Let m_{1}, \ldots, m_{k} be k pairwise coprime (positive) integers $\left(\forall i, j \operatorname{gcd}\left(m_{i}, m_{j}\right)=1\right)$ and x_{1}, \ldots, x_{k} any integers (for simplicity s.t.
$0 \leq x_{i}<m_{i}$), then there is a unique $x \bmod \prod_{i} m_{i}$ s.t. $x \equiv x_{i}$ $\bmod m_{i}$ for all $1 \geq i \geq k$

- Given x, m_{i}, it is easy to compute $x_{i}=x \bmod m_{i}$
- The inverse problem is in fact also easy, using the extended Euclid algorithm

Note: This theorem is very useful! (E.g. used in the admitted Pohlig-Hellman algorithm; also nice to speed-up modular/big number arithmetic)

CRT: how?

CRT reconstruction (Lagrange basis)

Input: $m_{1}, \ldots, m_{k}, x_{1}, \ldots, x_{k}$
Output: The unique $0 \geq x<\Pi m_{i}$ s.t. $x \equiv x_{i} \bmod m_{i}$
1 Let $M \hookleftarrow \prod_{i} m_{i}$
2 For all $1 \geq i \geq k$
$3 \quad M_{i} \hookleftarrow M / m_{i}$
4 Let a_{i} be such that $a_{i} M_{i} \equiv 1 \bmod m_{i} \triangleright$ Computed from $\operatorname{gcd}\left(M_{i}, m_{i}\right)=1$
$5 \quad$ Let $X_{i} \longleftarrow a_{i} M_{i} x_{i} \triangleright X_{i} \equiv x_{i} \bmod m_{i} ; X_{i} \equiv 0 \bmod m_{j \neq i}$
6 Return $\sum_{i} X_{i} \bmod M$

Back to Crypto: RSA

RSA (Rivest, Shamir, Adleman, 1977) in a nutshell: a family of "one-way permutations with trapdoor"

- Publicly define \mathcal{P} that everyone can compute
- Knowing \mathcal{P}, it is "hard" to compute \mathcal{P}^{-1} (even on a single point)
- There is a trapdoor associated w / \mathcal{P}
- Knowing the trapdoor, it is easy to compute \mathcal{P}^{-1} everywhere

RSA: how?

- Let p, q be two (large) prime numbers
- Let $N=p q$
- Any $0<x<N$ s.t. $\operatorname{gcd}(x, N)=1$ is invertible in $\mathbb{Z} / N \mathbb{Z}$
- Note that knowing $x \notin(\mathbb{Z} / N \mathbb{Z})^{\times} \Leftrightarrow$ knowing p and q
- Why?

Proposition: order of $(\mathbb{Z} / N \mathbb{Z})^{\times}$

Let N be as above, the order of the multiplicative group $(\mathbb{Z} / N \mathbb{Z})^{x}$ is equal to $(p-1)(q-1)$. (More generally, it is equal to $\varphi(N)$)

- So for any $x \in(\mathbb{Z} / N \mathbb{Z})^{\times}, x^{k \varphi(N)+1}=x$

RSA: more on how

- Let e be s.t. $\operatorname{gcd}(e, \varphi(N))=1$; consider $\mathcal{P}: x \mapsto x^{e} \bmod N$
- \mathcal{P} is a permutation over $(\mathbb{Z} / N \mathbb{Z})^{\times}$(in fact over $\mathbb{Z} / N \mathbb{Z}$)
- Knowing e, N, it is easy to compute \mathcal{P}
- Knowing e, $\varphi(N)$, it is easy to compute d s.t. ed $\equiv 1$ $\bmod \varphi(N)$
- Knowing d, x^{e}, it is easy to compute $x=x^{e d}$
\Rightarrow We have a permutation with trapdoor, but how good is the latter?

RSA: how secure?

Knowing ed $=k \varphi(N)+1$, it is easy to find $\varphi(N)$ (admitted)
Knowing $N=p q, \varphi(N)=(p-1)(q-1)$, it is easy to find p and q

- $\varphi(N)=p q-(p+q)+1 ; p+q=-(\varphi(N)-N-1)$
- For any a, b, knowing $a b$ and $a+b$ allows to find a and b
- Consider the polynomial $(X-a)(X-b)=X^{2}-(a+b) X+a b$
- $\Delta=(a+b)^{2}-4 a b=(a-b)^{2}$
- $a=((a+b)+(a-b)) / 2$
\Rightarrow Knowing, N, e, d, it is easy to factor N, plus:
- e does not (really) depend on N
\Rightarrow If it is easy to compute d from N, e, it is easy to factor N, and
- It is a hard problem to factor $N=p q$ when p, q are large random primes
BUT it might not be necessary to know d to (efficiently) invert \mathcal{P}

Recap: the RSA permutation family

- Let $N=p q$, with p, q prime numbers
- Let e be s.t. $\operatorname{gcd}(e, \varphi(N)=(p-1)(q-1))=1$
- In practice, e is often fixed to $3=2+1$ or $65537=2^{16}+1$
- The RSA permutation \mathcal{P} over $\mathbb{Z} / N \mathbb{Z}$ is given by $m \mapsto m^{e}$
- The inverse \mathcal{P}^{-1} is given by $m \mapsto m^{d}$, where ed $\equiv 1$ $\bmod \varphi(N)$
- N, e are the public parameters defining \mathcal{P}
- N, e, d are the private parameters defining $\mathcal{P}, \mathcal{P}^{-1}$

Assumption: Given only the public parameters, it is "hard" to invert \mathcal{P}

RSA for PKC

The objective: use RSA to build

- Public-key (asymmetric) encryption
- Can then be used for asymmetric key exchange
- Public-key signatures

These schemes will need to satisfy the usual security notions

- For encryption: IND-CPA/CCA ("semantic security")
- For signatures: Existential unforgeability under chosen-message attacks (EUF-CMA)

IND-CCA for Public-Key encryption

IND-CCA for (Enc, Dec): An adversary cannot distinguish Enc $\left(p k_{c}, 0\right)$ from $\operatorname{Enc}\left(p k_{c}, 1\right)$, when given (restricted) oracle access to $\operatorname{Dec}\left(s k_{C}, \cdot\right)$ oracle:
1 The Challenger chooses a key pair ($p k_{C}, s k_{C}$), a random bit b, sends $c=\operatorname{Enc}\left(p k_{c}, b\right), p k_{c}$ to the Adversary
2 The Adversary may repeatedly submit queries $x_{i} \neq c$ to the Challenger
3 The Challenger answers a query with $\operatorname{Dec}\left(s k_{C}, x_{i}\right) \in\{0,1, \perp\}$

- This assumes w.l.o.g. that the domain of Enc is $\{0,1\}$, and that decryption may fail
4 The Adversary tries to guess b

EUF-CMA for Public-Key signatures

EUF-CMA for (Sig, Ver): An adversary cannot forge a valid signature σ for a message m such that $\operatorname{Ver}\left(p k_{C}, \sigma, m\right)$ succeeds, when given (restricted) oracle access to $\operatorname{Sig}\left(s k_{C}, \cdot\right)$:
1 The Challenger chooses a pair $\left(p k_{C}, s k_{C}\right)$ and sends $p k_{C}$ to the Adversary
2 The Adversary may repeatedly submit queries m_{i} to the Challenger
3 The Challenger answers a query with $\sigma_{i}=\operatorname{Sig}\left(s k_{C}, m_{i}\right)$
4 The Adversary tries to forge a signature σ_{f} for a message $m_{f} \neq{ }_{i} m_{i}$, s.t. $\operatorname{Ver}\left(p k_{C}, \sigma_{f}, m_{f}\right)=\mathrm{T}$

RSA Encryption: first attempt

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Define:

- $\operatorname{Enc}(p k=(N, e), m)=\mathcal{P}(m)=\left(m^{e} \bmod N\right)$
- $\operatorname{Dec}(s k=(N, e, d), c)=\mathcal{P}^{-1}(c)=\left(c^{d} \bmod N\right)$

Not randomized \Rightarrow fails miserably, not IND-CCA

- When receiving $c=\mathcal{P}(b)$, the Adversary compares with $c_{0}=\mathcal{P}(0), c_{1}=\mathcal{P}(1)$

More issues with raw RSA

- If m, e are small, it may be that $m^{e} \bmod N=m^{e}$ (over the integers) \Rightarrow trivial to invert
- Example: N is of 2048 bits, $e=3, m$ is a one-bit challenge: adding 512 random bits of padding before encrypting does not provide IND-CCA security!
- Consider a broadcast setting where m is encrypted as $c_{i}=m^{3} \bmod N_{i}, i \in \llbracket 1,3 \rrbracket$. Suppose that $\forall i, m<N_{i}<c_{i}$. Using the CRT, one can reconstruct $m^{3} \bmod N_{1} N_{2} N_{3}=m^{3}$ and retrieve m.
- Even random padding might not prevent this attack, if too structured (Hastad, Coppersmith)

More issues with (semi-)raw RSA

A very useful result for analysing the security of RSA is due to Coppersmith (1996):

Finding small modular roots of univariate polynomials

Let P be a polynomial of degree k defined modulo N, then there is an efficient algorithm that computes its roots that are less than $N^{1 / k}$

- The complexity of the algorithm is polynomial in k (but w/a high degree)
- Example application: if $c=\left(2^{k} B+x\right)^{3} \bmod N$ is an RSA "ciphertext", B is known and of size $2 / 3 \log (N)$, one can find x of size $k<1 / 3 \log (N)$ by solving $\left(2^{k} B+X\right)^{3}-c=0$
- Other applications: in the previous slide; in slide \#28, ...

Proper RSA-ENC

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Let Pad, Pad^{-1} be a padding function and its inverse. Define:

- $\operatorname{Enc}(p k=(N, e), m)=\mathcal{P}(\operatorname{Pad}(m))=\left(\operatorname{Pad}(m)^{e} \bmod N\right)$
$-\operatorname{Dec}(s k=(N, e, d), c)=\operatorname{Pad}^{-1}\left(\mathcal{P}^{-1}(c)\right)=\operatorname{Pad}^{-1}\left(c^{d} \bmod N\right)$
Necessary conditions on Pad:
- It must be invertible
- It must be randomized (with a large-enough number of bits)
- For all $m, N, e, \operatorname{Pad}(m)^{e}$ must be larger than N

OAEP: A good padding function for RSA-ENC

OAEP: Optimal Asymmetric Encryption Padding (Bellare \& Rogaway, 1994):

- Let $k=\lfloor\log (N)\rfloor, \kappa$ be a security parameter
- Let $\mathcal{G}:\{0,1\}^{k} \rightarrow\{0,1\}^{n}, \mathcal{H}:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$ be two hash functions
- Define $\operatorname{Pad}(x)$ as $\left(y_{L} \| y_{R}\right)=x \oplus \mathcal{G}(r) \| r \oplus \mathcal{H}(x \oplus \mathcal{G}(r))$, where $r \stackrel{\$}{\leftarrow}\{0,1\}^{k}$
- One has $x=\operatorname{Pad}^{-1}\left(y_{L} \| y_{R}\right)=y_{L} \oplus \mathcal{G}\left(y_{R} \oplus \mathcal{H}\left(y_{L}\right)\right)$

More on OAEP

- OAEP essentially uses a two-round Feistel structure
- To be instantiated, it requires two hash functions \mathcal{H} and \mathcal{G} with variable output size
- A possibility is to use a single XOF $\mathcal{X}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, such as SHAKE-128

OAEP: Why does it work (kind of)?

Intuitively, full knowledge of $\left(y_{L} \| y_{R}\right)$ is necessary to invert:

- If part of y_{L} is unknown, $\mathcal{H}\left(y_{L}\right)$, then $\mathcal{G}\left(y_{R} \oplus \mathcal{H}\left(y_{L}\right)\right)$ are uniformly random
- If part of y_{R} is unknown, $\mathcal{G}\left(y_{R} \oplus \mathcal{H}\left(y_{L}\right)\right)$ is uniformly random
- In both cases $\Rightarrow x$ is hidden by a "one-time-pad"

More formally, we would like a reduction of the form:
Breaking RSA-OAEP w. Adv. $\epsilon \Rightarrow$ Inverting RSA w. Adv. $\approx \epsilon$
Exercise: Why would this give us a useful reduction?

OAEP woes

- The original proof that OWP-OAEP is IND-CCA (for any good OWP) (Bellare \& Rogaway, 1994) was incorrect
- Shoup showed that there can be no such proof (2001)
- But when OWP is RSA, then there is a proof (Shoup, 2001; Fujisaki \& al., 2000)!
- Exploits Coppersmith's algorithm!
- Not all the proofs are tight (e.g. Adv. $\epsilon \Rightarrow$ Adv. ϵ^{2})
- Need large parameters to give a meaningful guarantee

What about RSA-SIG now?

Let $\mathcal{P}, \mathscr{P}^{-1}$ be RSA permutations with parameters N, e, d. Define:

- $\operatorname{Sig}(s k=(N, e, d), m)=\mathcal{P}^{-1}(m)$
- $\operatorname{Ver}(p k=(N, e), \sigma, m)=\mathcal{P}(\sigma)=m$? T $: \perp$

Why this might work:

- Correctness: $\left(m^{d}\right)^{e} \equiv m \bmod N\left(\mathcal{P}^{-1} \circ \mathcal{P}=\mathcal{P} \circ \mathcal{P}^{-1}=\mathrm{Id}\right)$
- Security: Comes from the hardness of inverting \mathcal{P} w/o knowing $d \sim$ forging a signature for $m \Leftarrow$ compute $\mathcal{P}^{-1}(m)$

Raw RSA-SIG: That's no good!

- If $m \equiv m^{\prime} \bmod N$, then $\mathcal{P}^{-1}(m)=\mathcal{P}^{-1}(m) \Rightarrow$ trivial forgeries
- $\mathcal{P}^{-1}(m) \mathcal{P}^{-1}\left(m^{\prime}\right)=\left(m^{d}\right)\left(m^{\prime d}\right) \bmod N=\left(m m^{\prime}\right)^{d}$ $\bmod N=\mathcal{P}^{-1}\left(\mathrm{~mm}^{\prime}\right) \Rightarrow$ trivial forgeries over $\llbracket 0, N-1 \rrbracket$

Again, some padding is necessary!

Proper RSA-SIG

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Let Pad be a padding function. Define:

- $\operatorname{Sig}(s k=(N, e, d), m)=\mathcal{P}^{-1}(\operatorname{Pad}(m))$
- $\operatorname{Ver}(p k=(N, e), \sigma, m)=\mathcal{P}(\sigma)==\operatorname{Pad}(m) ? T \quad: \perp$
- Pad does not need to be invertible
- It does not need to be randomized (tho this can help)

What padding functions for RSA-SIG?

Let $k=\lfloor\log (N)\rfloor$
Full-Domain Hash (FDH) (Bellare \& Rogaway; 1993):

- Let $\mathcal{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ be a hash function, $\operatorname{Pad}(m)=\mathcal{H}(m)$ PFDH (Coron, 2002):
- Let $\mathcal{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ be a hash function, $r \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, $\operatorname{Pad}(m)=\mathcal{H}(m \| r)$
$\Rightarrow r$ is not included in the padding per se, but must be transmitted along
- Both are pretty simple, both provable in the random oracle model (ROM)
* The proof is tighter for PFDH ("good" security is obtained for smaller N)
- \mathcal{H} can instantiated by a XOF

Another nice padding: PSS-R

PSS-R (Bellare \& Rogaway, 1996):

- Let $\lfloor\log (N)\rfloor=k=k_{0}+k_{1}+k_{2}, \mathcal{H}:\{0,1\}^{k-k_{1}} \rightarrow\{0,1\}^{k_{1}}$, $\mathcal{G}:\{0,1\}^{k_{1}} \rightarrow\{0,1\}^{k-k_{1}}$ be two hash functions, $r \stackrel{\$}{\leftarrow}\{0,1\}^{k_{0}}$
- Pad : $\{0,1\}^{k_{2}} \rightarrow\{0,1\}^{k}$ is defined by $\operatorname{Pad}(x)=\mathcal{H}(x \| r) \|(x \| r \oplus \mathcal{G}(\mathcal{H}(x \| r)))$
- If $|x|<k_{2}$, PSS-R is invertible (then, the message m does not need to be transmitted with the signature)
- Otherwise, e.g. compute $\operatorname{Pad}\left(x^{\prime}\right)$ where $x^{\prime}=I(x)$, $\mathcal{I}:\{0,1\}^{*} \rightarrow\{0,1\}^{k_{2}}$ a hash function (then, k_{2} must be "large enough")

More on PSS-R

- In fact, PSS-R may also be used as padding for RSA-ENC (Coron \& al., 2002)!
- Notice the relative similarity between PSS-R and OAEP
- Both SIG and ENC cases are provably secure in the ROM
- In the specific case of RSA, same as OAEP

RSA-SIG: Quick implementation comments

- The signer knows N, e, d, and also the factorization $p \times q$ of N
- Thanks to the CRT, any computation mod N (in particular $m \mapsto m^{d}$ may be done $\bmod p$ and $\bmod q$
- A CRT implementation is more efficient, as multiplying two numbers does not have a linear cost
- In fact, such CRT decomposition is a useful approach for general big number arithmetic
" \Rightarrow "RSA-CRT" implementations
- More efficient, but beware of fault attacks! (That's a general warning, tho)

RSA on the side

One can also use the RSA permutation to define a PRNG (Micali \& Schnorr, 1988). Let (N, e) be RSA parameters, $n=\log (N)$, then:
1 Start with a random (secret) seed $x_{0} \in \llbracket 0,2^{r} \llbracket, 2^{r} \ll N$
2 Step the generator by computing $v_{i}=x_{i-1}^{e} \bmod N$
3 Extract the next secret state x_{i} from $v_{i}=2^{k} x_{i}+w_{i}, k=n-r$
4 Output w_{i} as pseudo-random bits
Question: how small can r be?

- Should be at least n / e, otherwise modular reduction may not happen
- Micali and Schnorr proposed 2n/e, which seems okay (Fouque \& Zapalowicz, 2014)

RSA, DH recap, comparison

Roughly, hardness of factoring, DLOG \Rightarrow Asymmetric key exchange, public-key signatures

- Factoring \leadsto RSA: One-way permutation w/ trapdoor, can be used for both
- DLOG \sim DH, Schnorr/DSA/...: No permutation, but same functionalities

There are some differences, tho

Some DLOG schemes properties

- For key exchange, can change the secret every time \Rightarrow "forward secrecy"
- For (the popular schemes for) signatures, good randomness is essential! (Otherwise it breaks)
- Picking a random exponent is easy
- Picking a good group is not completely staightforward
- Some active attacks are possible
" It is possible to "break entire groups" (e.g. \mathbb{F}_{p}^{\times})

Some RSA properties

- Secrets are fixed \Rightarrow a break can compromise a long history
- No randomness needed for signatures (e.g. basic FDH), randomness failures don't reveal the secret
- Generating parameters is somewhat hard
- But all of them are independent (in principle)

