Introduction to cryptology
TP

2018-W11/12

Introduction

The goal of this “TP” lab session is to implement a simple keyed cryptographic function and to
experimentally compute collisions in its (truncated) output. An optional second part considers
a few additional functions built from a single unkeyed permutation with small state.

Instructions & grading

All functions and programs must be written in C or C++

The first part of this TP (up to question 5 included) is graded as contréle continu. You must
send a written report (in a portable format) detailing your answers to the questions, and the
corresponding source code with compilation and execution instructions by April 6 (2018-04-
06T23:59+0200) to:

pierre.karpman@univ-grenoble-alpes.fr.

Working in teams of two is allowed (but not mandatory), in which case only one report needs
to be sent, with the name of both students clearly mentioned.

By default, this mandatory contréle continu grade (MCC) will count for one third of the
final grade for this course, the other two thirds being the grade of a final exam (FE). The second
part of this TP (question 6 to 11) is optional, and will be graded separately, starting from zero
(for instance, only answering question 6 will only result in a very poor grade for this part). This
optional controle continu grade (OCC) can only increase the final grade for this course, and will
be incorporated using the formula:

Final grade = max((MCC + 2FE) /3, (MCC + OCC + 2FE)/4)

Part 1 (mandatory)

Question 1

Write a function implementing SipHash-2-4 [AB12]. This function must have the following
prototype:

uint64_t siphash_2_4(uint64_t k[2], uint8_t *m, unsigned mlen);

You may (and should) test your implementation by comparing its outputs with the ones
provided in [AB12, Appendix A], and the following, with k2 = {0, 0} andm2 = {0x0, 0x1,
0x2, 0x3, 0x4, 0x5, 0x6, 0xT7}:

* siphash_2_4(k, m2, 8) == 0x93£5£5799a932462
e siphash_2_4(k, NULL, 0) == 0x726fdb47dd0e0e31
e siphash_2_4(k2, NULL, 0) == 0x1e924b9d737700d7


mailto:pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_intro2017_tp.pdf

Question 2

Do you think that the key size of sip_hash_2_4 is large enough to make an exhaustive search
of the keyspace intractable? Can this function be considered to be collision-resistant?

The goal of the following questions is to experimentally compute collisions for a variant of
SipHash that has its output truncated to its 32 least significant bits. While computing collisions
for the original function would still be possible in a reasonable time, it would either require a
large amount of memory or a memoryless implementation of collision search that is beyond
the scope of this exercise.

Question 3

Write a function sip_hash_fix32 that “simplifies” SipHash by truncating its output to 32-bit,
by using a shortened 32-bit key and by having a fixed-size 32-bit message input. The prototype
of this function is:

uint32_t sip_hash_fix32(uint32_t k, uint32_t m)

You are free to choose how to map the first argument k to a 128-bit key for the original SipHash
and how to map m to a byte string, as long as those mappings are injective.

Question 4
Write a function coll_search of prototype:

uint64_t coll_search(uint32_t k, uint32_t (*fun) (uint32_t, uint32_t))

This function takes as input a function pointer fun for a function that has the same type as
sip_hash_£fix32, and a 32-bit key k. It must return as output the minimum size (minus 1) of
the sequence (fun (k, 1)) (indexed by i) such that two of its element collide. For example, if fun
and k are such that fun(k,0), fun(k,1), ..., fun(k,74221) are all distinct but fun (k,74222)
=fun(k,10394), then coll_search(k, &fun) mustreturn 74222,

This function must be reasonably fast: it should not take more than a few dozen millisec-
onds to return. However, in order to simplify things, your implementation only needs to work
for “random-looking” functions. For instance, it is fine if it fails (or even crashes) when fun (k, .)
is a permutation.

Advice. Before starting an implementation, try to estimate what the expected output should
be for a random function. Is that value small enough to let you store the entire sequence (for
instance as a list) up to finding a collision? Would a quadratic search through an unsorted list
of that size be fast enough?

One possible way (but not the only one) of storing such a sequence in this case is to use
a hash table. Assuming that the sequence elements are random, how can you “hash them”
very efficiently? Try to guess the number and the size of buckets that you need, and make
adjustements if necessary based on experiments.

Note. When writing your report, be particularly careful when explaining your implementation
choices for this question.

Question 5

Gather statistics about the expected time (as a number of function calls) necessary to get a
collision for sip_hash_£fix32 “in counter mode” for a fixed key. In particular, give the average,
minimum, and maximum time over 1000 (or more) distinct keys. Are these results consistant
with your initial estimate?


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_intro2017_tp.pdf

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_intro2017_tp.pdf

Part 2 (optional)

Question 6

Write a function twine_perm_z thatimplements the permutation of TWINE given in [SMMK12,
Algorithm 2.1] where all the round keys RKfj) are set to zero'. This function must have the fol-
lowing prototype:

uint64_t twine_perm_z(uint64_t input);

We will use the convention that the 16-nibble input is parsed as following (you may use a dif-
ferent type for X):

unsigned X[16];
for (int i = 0; 1 < 16; i++)
{
X[i] = (input >> (4*i)) & OxF;
}

The reverse process is then used to create the output as a 64-bit string.
You may (and should) test your implementation by comparing its outputs to the following
known values:

e twine_perm_z(0x0000000000000000ULL) == 0xc0c0c0c0c0c0cOcO
* twine_perm_z(0x123456789abcdef1ULL) == 0xb4e946d9ad8f7b29

e twine_perm_z(0xb4329ed38453aac8ULL) == 0x784f5613309457d8

Question 7
Use the function twine_perm_z to define a small cryptographic function of prototype:

uint32_t twine_funl(uint32_t k, uint32_t m);

defined as the truncation to the 32 least significant bits of the output of twine_perm_z called
on the concatenation of k and m, where the former occupies the most significant 32 bits. You
may (and should) test your implementation by comparing its outputs to the following known
values:

e twine_fun1(0x00000000, 0x00000000) == 0xc0c0c0cO

e twine_funl(Oxcdef1234, 0xabl123478) == 0x6465886¢c

Question 8

Do you think that the key size of twine_fun1 is large enough to make an exhaustive search of
the keyspace intractable? Can this function be considered to be collision-resistant?

Question 9

Gather statistics about the expected time (as a number of function calls) necessary to get a
collision for twine_funl “in counter mode” for a fixed key. In particular, give the average,
minimum, and maximum time over 1000 (or more) distinct keys. How do these results compare
with sip_hash_fix32?

I This change has a side-effect that the resulting permutation is vulnerable to slide attacks. This is however not
problematic in the case of this exercise.


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_intro2017_tp.pdf

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_intro2017_tp.pdf

Question 10

The previous function only takes a fixed-size message as input. We wish to extend it to mes-
sages of arbitrary length by splitting the message input in two, using one half for a chaining
value.

More precisely, let f: {0,1}3? x {0,1}!6 x {0,1}!6 — {0,1}3? and iv = OxFFFF, one recursively
defines F: {0,1}% x {0,1}'6 — {0,1}% for any ¢ > 0 by:

* F(k, my) =1(k,iv, mp)
® F(kr (mO’ mi,..., ml)) = f(k’ LF(k) (m()’ ml’ (KXY mi—l))J 16> mi)

with [-];6 denoting truncation to the 16 least significant bits.
Write the following functions:

* uint32_t twine_fun2(uint32_t k, uintl6_t *m, unsigned mlen)
e uint32_t twine_fun2_fix32(uint32_t k, uint32_t m)
e uint32_t twine_fun2_fix16(uint32_t k, uint32_t m)

where twine_fun? is an instantiation of the above construction for F, using twine_funi for
f as f(k,x,y) = twine_funl(k, (x << 16) ~ y), twine_fun2_fix32 is a simplified instance
with a fixed 32-bit message, and twine_fun2_£fix16 is a simplified instance with a fixed 16-bit
message. Note that this last function still uses a type uint32_t for its message argument, de-
spite the fact that it should only be 16-bit long. This is to allow using this function as argument
to coll_search.

You may (and should) test your implementation by comparing its outputs to the following
known values, withm1 = {0x67FC},m2 = {0xEF12, 0x5678},andm3 = {0xEF12, 0x5678,
0x31AA, 0x7123}

e twine_fun2(0x00000000, ml, 1) == 0xcb57c8cbc
e twine_fun2(0x23AE90FF, m2, 2) == Oxab8el124f

e twine_fun2 (OxEEEEEEEE, m3, 4) == 0x9941a493

Question 11

Gather statistics about the expected time (as a number of function calls) necessary to get a
collision for twine_fun2_fix32 and twine_fun2_fix16 “in counter mode” for a fixed key. In
particular, give the average, minimum, and maximum time over 1000 (or more) distinct keys.
How do these results compare with sip_hash_£fix32 and twine_fun1? How can you explain
these results?

References

[AB12] Jean-Philippe Aumasson and Daniel J. Bernstein. SipHash: A Fast Short-Input PRF.
In Steven D. Galbraith and Mridul Nandi, editors, Indocrypt 2012, volume 7668
of Lecture Notes in Computer Science, pages 489-508. Springer, 2012. Available at
https://eprint.iacr.org/2012/351.

[SMMK12] Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and Eita Kobayashi.
TWINE : A Lightweight Block Cipher for Multiple Platforms. In Lars R. Knudsen
and Huapeng Wu, editors, SAC 2012, volume 7707 of Lecture Notes in Computer
Science, pages 339-354. Springer, 2012. Available at https://www-1jk.imag.fr/
membres/Pierre.Karpman/cry_intro_tp_twine.pdf.


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_intro2017_tp.pdf
https://eprint.iacr.org/2012/351
https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_intro_tp_twine.pdf
https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_intro_tp_twine.pdf

