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Exercise 1: The Menezes-Okamoto-Vanstone attack on the elliptic curve
discrete logarithm problem

The discrete logarithm problem in a prime-order group of size N of the points of an elliptic
curve F is generally considered to be “maximally hard”, in the sense that the best known
algorithms to solve it are generic, and have complexity v/N. Yet, there are some cases
where this problem becomes much easier.

Let E/F, be an elliptic curve defined over the field F,. The points of £ can be added
together and form a group. The neutral element of this group is written O. The points
P of E such that P added to itself r times (for some 7, noted [r]P) is equal to O forms a
subrgoup of F, noted E[r], which is isomorphic to Z/rZ x Z/rZ. One can define a pairing
e : E[r] x Elr] = u,, where u, is the group of r-th roots of unity. The smallest d such
that p, C qud is called the embedding degree of r in IFy.

We want to study the hardness of the DLP in a subgroup (P) when P € E[r]. That
is, given Q) = [k]P, we wish to recover k.

Q. 1: Show that if T € F is such that P and T generate the entire group E[r], then
w:=e(P,T) is a generator of y,.

Q. 2: Give an expression of e(Q,T") = e([k]P,T) in function of k and w.
Q. 3: Using the previous expression, show how to retrieve k£ by solving a DLP in IE‘qu.

Q. 4: Conclude on the importance of the embedding degree for the hardness of the DLP
in (P).

Note: In most cases, this attack is not a concern, as the embedding degree is usually
expected to be proportional to r. However, some settings require it to be reasonably small
(e.g. 12), for instance when the pairing is used to perform a three-party Diffie-Hellman
key exchange.

Exercise 2: Big number arithmetic

Assume that we have a CPU featuring a 64 x 64 — 128 bit multiplier mul. Any two
integers a, b < 264 can then be multiplied (without loss of precision) with one multiplication
instruction, i.e. a cost of 1M. This CPU also features a 64 x 64 — 64 bit integer adder add
that adds two numbers a, b < 264 and reduces the result mod 2%4. If such a reduction was
performed, a carry flag CF is set to 1; otherwise, it is set to 0. A second addition instruction
addc is similar to add, except that it additionally adds the value previously contained in
CF. Both of these have a cost of one addition instruction, i.e. 1A. Finally, we suppose that
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the instructions do not destroy their input operands, and adopt the syntax mul a, b, c,
d to say that c (resp. d) stores the high bits (resp. low bits) of the multiplication of a by
b, and add a, b, c to say that c stores the result of the addition of a and b.

Q. 1: Let r0, r1, r2, r3 be registers that hold the numbers 263, 263 4 225 212 960 What
are the values of r4 and r5 after the execution of add r0, rl, r4; add r2, r3, r57
What about after the execution of add r0, rl, r4; addc r2, r3, r57

Q. 2: Give a procedure to add two 256-bit numbers together, modulo 2256, What is its
complexity (in terms of A)?

Q. 3: We now wish to compute the exact product of two 128-bit numbers f, g. Let
f=2%f 4 fo, g = 254g; + go with f;, g; less than 26%; give an algorithm to compute
h:= fg=(25*f1 4+ £0)(25%g1 + go) = 2'9%h3 + 2'28hy +264h; + hy. What is the complexity
(in terms of M and A) of your algorithm?

VLY

In the following exercises, we let N = pq be the product of two prime numbers,
e € (Z) p(N)Z)*, d = e~!. We define the RSA permutation RSA-P with parameters N
and e as RSA-P : Z/N7Z — Z/NZ, m ~ m®. Its inverse is given by ¢+ c?.

Exercise 3: Domain of an RSA permutation

Q. 1: Using the extended Euclid algorithm, show that if 0 < a < N is such that
ged(a, N) = 1, then a has a multiplicative inverse modulo N. Show then that for any
e > 0, a° is invertible modulo N.

Q. 2: Consider now 0 < o < N with ged(a, N) = p. What is the value of @ mod p?
Does « have an inverse modulo N7 What is ged(«, ¢)? Using the CRT, how many such
elements are there in Z/NZ? What is ¢! mod ¢?

Q. 3: Let 0 < u < N be the unique number modulo N that verifies v = 0 mod p,
v = 1 mod ¢q. How can you compute u using inversion modulo ¢? Let « be as in the
above question; what are a4~! mod N and o#(¢=1) mod N (for any k)? Give a necessary
condition on e for the map = +— x° to be invertible on .

Q. 4: Letec (Z/p(N)Z)*, d=e~'. What is a*® mod ¢? What is a®® mod N? Are
there any elements not invertible by x +— 2¢? What is the domain of an RSA permutation?

Exercise 4: Semi-homomorphic property of an RSA permutation
Q. 1: Let m, m' € Z/NZ, ¢ = RSA-P(m), ¢ = RSA-P(m’). Give an expression for c¢/

of the form x¢ (for some z). Use this expression to compute the value RSA-P~!(cc/).

Q. 2: Explain how the above property allows to multiply two numbers without decrypt-
ing them.

Q. 3: Note that the above procedure is deterministic. Does a modified procedure that
works with encrypted numbers of the form z|| pad(-) (where pad is a non-deterministic
function) still allow to multiply numbers in encrypted form?
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