Introduction to cryptology TD#2

2018-W05

Exercise 1: ECB, toy modes

Let $\mathscr{E}: \{0, 1\}^{\kappa} \times \{0, 1\}^{n} \to \{0, 1\}^{n}$ be a block cipher. The ECB encryption of a message $m = m_{0} ||m_{1}|| \dots$ (where all of the m_{i} s are *n*-bit long) with \mathscr{E} and a key *k* is given by $\mathscr{E}(k, m_{0}) ||\mathscr{E}(k, m_{1}) \dots$

Q. 1: Explain why ECB is not a good mode (in particular why it is not IND-CPA).

We modify ECB to the following toy mode, that uses *domain separation* to solve some of the issues of ECB: the encryption of a message $m = m_0 ||m_1|| \dots$ (where all of the m_i s are n - b-bit long) with \mathscr{E} and a key k is given by $\mathscr{E}(k, m_0 || t_0) || \mathscr{E}(k, m_1 || t_1) \dots$, where the t_i s are b-bit pairwise-distinct values (for instance one can take $t_0 = 0$, $t_1 = 1$, etc.).

Q. 2: Give an upper-bound for the maximum message length that can be securely encrypted with this toy mode before having to change the key.

Q. 3: Are messages encrypted as above authenticated?

We modify again the toy mode. The encryption of a message $m = m_0||m_1||...$ (where all of the m_i s are n - b - r-bit long) with \mathscr{E} and a key k is given by $\mathscr{E}(k, m_0||t_0||0^r)||\mathscr{E}(k, m_1||t_1||0^r)...$, where the t_i s are b-bit pairwise-distinct values and 0^r is a string or r zeros.

Q. 4: What is the probability that a uniformly random ciphertext corresponds to a message encrypted with the above toy mode? Explain how this allows to perform some authentication of the ciphertexts. Give a trivial (but limited) attack that may still be performed by an adversary.

Exercise 2: Arithmetic in $Z/2^8Z$ and F_{2^8}

Q.1: Compute the following in $\mathbb{Z}/2^8\mathbb{Z}$:

- 153 + 221
- 29 + 8
- 64 + 31

Q. 2: Compute the following in \mathbf{F}_{2^8} (where a decimal representation is used for the field elements, i.e. the addition corresponds to the bitwise XOR):

- 153 + 221
- 29 + 8
- 64 + 31

Q.3: Under what condition on their operands are the additions in $\mathbb{Z}/2^8\mathbb{Z}$ and \mathbb{F}_{2^8} equivalent? (Prove it.)

Exercise 3: CTR mode

Let $\mathscr{E}: \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}$ be a block cipher. The CTR encryption of a message $m = m_{0}||m_{1}||...$ (where all of the m_{i} s are *n*-bit long) with \mathscr{E} and a key *k* is given by $m_{0} \oplus \mathscr{E}(k, t_{0})||m_{1} \oplus \mathscr{E}(k, t_{1})...$, where the t_{i} s are *n*-bit pairwise-distinct values (for instance one can take $t_{0} = 0, t_{1} = 1$, etc.). In other words, one is encrypting a message with a pseudo-random keystream generated by \mathscr{E} .

Q.1: Show that the keystream used to encrypt a message of 2^n blocks (that is $n2^n$ -bit long) is not perfectly random, if it is generated with a single key.

Hint: Exploit the fact that $\mathscr{E}(k, \cdot)$ is invertible.

We may try to solve the problem of the previous question by defining $\mathscr{E}'(k, x) := \mathscr{E}(k, x) \oplus x$. This makes \mathscr{E}' non-injective. One may then still encrypt a message $m = m_0 ||m_1|| \dots$ as $m_0 \oplus \mathscr{E}'(k, t_0) ||m_1 \oplus \mathscr{E}'(k, t_1) \dots$

Q.2: Show that if the t_i values are public, then \mathcal{E}' suffers from the same problem as \mathcal{E} in Q. 1.

(However, it can be shown that if the t_i s are secret and "random" enough (for instance $t_i = \mathcal{E}''(k, t'_i)$ where the t'_i s are pairwise distinct), then \mathcal{E}' does achieve better security than \mathcal{E} in CTR mode.)

Exercise 4: Bit-vector arithmetic

Q. 1: Write a small "naïve" C function that computes the scalar product of two vectors of \mathbf{F}_2^{32} . This function must have the following prototype:

```
uint32_t scalar32_naive(uint32_t x, uint32_t y).
```

Q. 2: Write another implementation of the same function, of prototype

```
uint32_t scalar32_popcnt(uint32_t x, uint32_t y),
```

that uses a *bitwise and* instruction "&" and the *population count* function for 32-bit words "__builtin_popcount()".

Q.3 Explain why in C, assuming that x is of type $uint32_t$, x << 1 computes the multiplication of x by two in $Z/2^{32}Z$.

Q.4 Explain why in C, assuming that x is of type $uint32_t$, x >> 1 is equivalent to x / 2.

Q.5 Write the matrix *M* of dimension 8 over \mathbf{F}_2 such that $M\mathbf{x} = \text{mul2}(\mathbf{x})$, where mul2 is defined as:

```
uint8_t mul2(uint8_t x)
{
   return ((x << 1) & 0xFF);
}</pre>
```

and **x** and **x** are in natural correspondence (with the encoding convention that $\mathbf{x} = (\mathbf{x}_0 \ \mathbf{x}_1 \ \dots \mathbf{x}_7)^t \mapsto \mathbf{x}_7 2^7 + \mathbf{x}_6 2^6 + \dots + \mathbf{x}_0 2^0$). Is this matrix invertible?

Q.6 What are the logical formulas computed by the following functions on their inputs?

```
uint32_t f1(uint32_t x, uint32_t y, uint32_t z)
{
  return ((x & y) | (~x & z));
}
uint32_t f2(uint32_t x, uint32_t y, uint32_t z)
{
  return ((x & y) | (x & z) | (y & z));
}
uint32_t f2(uint32_t x, uint32_t y, uint32_t z)
{
  return (z ^ (x & (y ^ z)));
}
```

Which of these functions can be computed as matrices?