Introduction to cryptology
 TD\#2

2018-W05

Exercise 1: ECB, toy modes

Let $\mathscr{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher. The ECB encryption of a message $m=m_{0}\left\|m_{1}\right\| \ldots$ (where all of the m_{i} s are n-bit long) with \mathscr{E} and a key k is given by $\mathscr{E}\left(k, m_{0}\right) \| \mathscr{E}\left(k, m_{1}\right) \ldots$.
Q. 1: Explain why ECB is not a good mode (in particular why it is not IND-CPA).

We modify ECB to the following toy mode, that uses domain separation to solve some of the issues of ECB: the encryption of a message $m=m_{0}\left\|m_{1}\right\| \ldots$ (where all of the m_{i} s are $n-b$ bit long) with \mathscr{E} and a key k is given by $\mathscr{E}\left(k, m_{0} \| t_{0}\right) \| \mathscr{E}\left(k, m_{1} \| t_{1}\right) \ldots$, where the t_{i} s are b-bit pairwise-distinct values (for instance one can take $t_{0}=0, t_{1}=1$, etc.).
Q. 2: Give an upper-bound for the maximum message length that can be securely encrypted with this toy mode before having to change the key.

Q.3: Are messages encrypted as above authenticated?

We modify again the toy mode. The encryption of a message $m=m_{0}\left\|m_{1}\right\| \ldots$ (where all of the $m_{i} \mathrm{~s}$ are $n-b-r$-bit long) with \mathscr{E} and a key k is given by $\mathscr{E}\left(k, m_{0}\left\|t_{0}\right\| 0^{r}\right) \| \mathscr{E}\left(k, m_{1}\left\|t_{1}\right\| 0^{r}\right) \ldots$, where the t_{i} s are b-bit pairwise-distinct values and 0^{r} is a string or r zeros.
Q. 4: What is the probability that a uniformly random ciphertext corresponds to a message encrypted with the above toy mode? Explain how this allows to perform some authentication of the ciphertexts. Give a trivial (but limited) attack that may still be performed by an adversary.

Exercise 2: Arithmetic in $\mathrm{Z} / 2^{8} \mathbf{Z}$ and $\mathrm{F}_{2^{8}}$

Q. 1: Compute the following in $\mathbf{Z} / 2^{8} \mathbf{Z}$:

- $153+221$
- $29+8$
- $64+31$
Q. 2: Compute the following in $\mathbf{F}_{2^{8}}$ (where a decimal representation is used for the field elements, i.e. the addition corresponds to the bitwise XOR):
- $153+221$
- $29+8$
- $64+31$
Q. 3: Under what condition on their operands are the additions in $\mathbf{Z} / 2^{8} \mathbf{Z}$ and $\mathbf{F}_{2^{8}}$ equivalent? (Prove it.)

Exercise 3: CTR mode

Let $\mathscr{E}:\{0,1\}^{\kappa} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher. The CTR encryption of a message $m=m_{0}\left\|m_{1}\right\| \ldots$ (where all of the m_{i} s are n-bit long) with \mathscr{E} and a key k is given by $m_{0} \oplus \mathscr{E}\left(k, t_{0}\right) \| m_{1} \oplus \mathscr{E}\left(k, t_{1}\right) \ldots$, where the t_{i} s are n-bit pairwise-distinct values (for instance one can take $t_{0}=0, t_{1}=1$, etc.). In other words, one is encrypting a message with a pseudo-random keystream generated by \mathscr{E}.
Q. 1 : Show that the keystream used to encrypt a message of 2^{n} blocks (that is $n 2^{n}$-bit long) is not perfectly random, if it is generated with a single key.

Hint: Exploit the fact that $\mathscr{E}(k, \cdot)$ is invertible.
We may try to solve the problem of the previous question by defining $\mathscr{E}^{\prime}(k, x):=\mathscr{E}(k, x) \oplus x$. This makes \mathscr{E}^{\prime} non-injective. One may then still encrypt a message $m=m_{0}\left\|m_{1}\right\| \ldots$ as $m_{0} \oplus$ $\mathscr{E}^{\prime}\left(k, t_{0}\right) \| m_{1} \oplus \mathscr{E}^{\prime}\left(k, t_{1}\right) \ldots$.
Q. 2 : Show that if the t_{i} values are public, then \mathscr{E}^{\prime} suffers from the same problem as \mathscr{E} in Q. 1.
(However, it can be shown that if the $t_{i} \mathrm{~s}$ are secret and "random" enough (for instance $t_{i}=$ $\mathscr{E}^{\prime \prime}\left(k, t_{i}^{\prime}\right)$ where the t_{i}^{\prime} s are pairwise distinct), then \mathscr{E}^{\prime} does achieve better security than \mathscr{E} in CTR mode.)

Exercise 4: Bit-vector arithmetic

Q. 1: Write a small "naïve" C function that computes the scalar product of two vectors of \mathbf{F}_{2}^{32}. This function must have the following prototype:

```
uint32_t scalar32_naive(uint32_t x, uint32_t y).
```

Q. 2: Write another implementation of the same function, of prototype

```
uint32_t scalar32_popcnt(uint32_t x, uint32_t y),
```

that uses a bitwise and instruction "\&" and the population count function for 32-bit words "__builtin_popcount()".
Q. 3 Explain why in C, assuming that x is of type uint32_t, $\mathrm{x} \ll 1$ computes the multiplication of x by two in $\mathbf{Z} / 2^{32} \mathbf{Z}$.
Q. 4 Explain why in C, assuming that x is of type uint32_t, $\mathrm{x} \gg 1$ is equivalent to $\mathrm{x} / 2$.
Q. 5 Write the matrix M of dimension 8 over \mathbf{F}_{2} such that $M \mathbf{x}=\operatorname{mul2}(\mathrm{x})$, where mul2 is defined as:

```
uint8_t mul2(uint8_t x)
{
    return ((x << 1) & 0xFF);
}
```

and \mathbf{x} and x are in natural correspondence (with the encoding convention that $\mathbf{x}=\left(\begin{array}{llll}\mathbf{x}_{0} & \mathbf{x}_{1} & \ldots \mathbf{x}_{7}\end{array}\right)^{t} \mapsto$ $\mathbf{x}_{7} 2^{7}+\mathbf{x}_{6} 2^{6}+\ldots+\mathbf{x}_{0} 2^{0}$. Is this matrix invertible?
Q. 6 What are the logical formulas computed by the following functions on their inputs?

```
uint32_t f1(uint32_t x, uint32_t y, uint32_t z)
{
    return ((x & y) | (~}x & z))
}
uint32_t f2(uint32_t x, uint32_t y, uint32_t z)
{
    return ((x & y) | (x & z) | (y & z));
}
uint32_t f2(uint32_t x, uint32_t y, uint32_t z)
{
    return (z ~ (x & (y ~ z)));
}
```

Which of these functions can be computed as matrices?

