Introduction to cryptology
(GBIN8U16)

Final Examination

2018-05-03

Instructions

The duration of this examination is three hours. All exercises are independent, and they
may be solved in any order. Answers to the questions must be detailed and complete to
get maximum credit. The full scale is not determined yet: it may not be necessary to
answer all questions in order to obtain a perfect mark.

Exercise 1: Hash function security notions

In the following questions, H : {0,1}* — {0,1}" is a cryptographic hash function.

Q. 1:

An attacker is given a message m € {0,1}*; his/her goal is to find a message

m' # m s.t. H(m) = H(m').

1.

2.

Q. 2:
. What is the name given to this type of attack?

What is the name given to this type of attack?

Assuming that H behaves like a random function, how many solutions exist to the
problem (that is, what is the size of the set {m’ € {0, 1}*|H(m) = H(m')}?

. Assuming that H behaves like a random function, how many evaluations of H are

sufficient to find one solution with probability close to 1?7 How many are necessary,
with high probability?

. Give an example of hash function H (that does not necessarily behave as a random

function) for which there is no solution for this attack for the message 0.

An attacker wants to find m and m’ # m s.t. H(m) = H(m/).

. Assuming that H behaves like a random function, how many evaluations of H are

sufficient to find one solution with probability close to 17 How many are necessary,
with high probability?

Q. 3: Given the current state of technology, which of the following values of n offer
sufficient protection against the above attacks?

1.
2.

3.

64, when one only wishes to be protected from the attack of Q. 1.
64, when one only wishes to be protected from the attack of Q. 2.

128, when one only wishes to be protected from the attack of Q. 2.



4. 256, when one only wishes to be protected from the attack of Q. 1.

5. 384, when one wishes to be protected from both attacks.

Exercise 2: A random sequence

Q. 1: Let S be a set of size N; let (uy)nen be a sequence whose elements are drawn

independently and uniformly at random from S, i.e. for all 7, u; &S, Suppose that you
do not initially know S, nor N.

1. Give an algorithm that takes as input a finite number of elements of (u,) and that
returns an approximation of N.

2. What is the time and memory complexity of your algorithm?

Exercise 3: Diffie-Hellman assumptions

In the following questions, G = (g) is a finite group of order N (i.e. with N elements
0 N-1
9% gV .

Q. 1: Let h=g% 0<a< N be an element of G.
1. What is the discrete logarithm of h with respect to the generator g?

2. Assuming that h is a generator of G (i.e. (h) = G), what is the discrete logarithm
of h with respect to the generator h?

The discrete logarithm (DLOG) assumption for G states that given g, h = ¢%, with
as [0, N[, it is hard to compute the discrete logarithm of A in base g.

Q. 2: The computational Diffie-Hellman (CDH) assumption states that given g, g2, g°,

with a < [0, N[, b < [0, N|, it is hard to find g°*. An attacker is said to break CDH if
she/he is able to find 2.

1. Show that if one can compute discrete logarithms in base g with complexity L and
an exponentiation in base g with complexity E, then one can break CDH with
complexity < L + E.

Q. 3: The decisional Diffie-Hellman (DDH) assumption states that given g, ¢%, ¢°, ¢°,
with a < [0, N[, b < [0, N], it is hard to distinguish the two cases z = ab or x < [0, N|.
An attacker is said to break DDH if she/he is able to decide the value of x with probability

~ 1.
1. Show that if one can break CDH with complexity C, one can break DDH with
complexity C.
Q. 4: An assumption A is said to be stronger than an assumption B if breaking B

implies breaking A, but breaking A does not necessarily imply breaking B.

1. Order the DDH, CDH and DLOG assumptions from weakest to strongest.



Exercise 4: Baby-step/Giant-step over an interval

In the following questions, G = (g) is a finite group of order N (i.e. with N elements

0 N—1
9% gV .
We recall that the baby-step/giant-step algorithm may be used to solve a discrete-

logarithm problem in G with respect to the generator g. By defining v as {\/ N -|, one
precomputes the list L1 = [¢?%; 0 < i < v], and solves the problem g% by computing

Lo = [g“gi; 0 <i <wv]. A collision between the two lists gives the value of the discrete
logarithm.

Q. 1:

1. What is the time and memory complexity of the baby-step/giant-step algorithm?

Q. 2: Suppose now that you must compute the discrete logarithm of g* and that you
know that a € I = [, 5] C [0, N], and that #/ = —a+ 1 < N.

1. Explain in words how to modify the above algorithm to solve this specific discrete
logarithm more efficiently. What is the resulting time and memory complexity?

2. Give a full pseudo-code of this modified algorithm.

Exercise 5: Symmetric modes of operation

In the following questions, &€ : {0,1}* x {0,1}" — {0,1}" is a block cipher. We suppose
that € is a “good” cipher, in the sense that for every key k, £(k,-) behaves like a random
permutation.

Q. 1: In order to encrypt a message m of more than n bits with £, one proposes to use
the following mode: pad m so that its length is equal to | x n for some [; write the resulting
message as the concatenation my||...||my, with all the blocks m;s being n-bit long; for all
i, encrypt the block m; with the key &k and initialization vector ¢q as ¢; = E(k,m; ® ¢;—1).

1. What is the name of this mode?

2. Give the decryption procedure, that from co||...||¢; and k returns ml||...||m;.

Q. 2:  We recall (briefly) that a good mode of operation must be such that distinguishing
the encryption of two messages m and m’ of equal length is hard, while being given prior
access to chosen-plaintext encryptions.

1. Is the mode of the previous question good if ¢g is set to a constant?

2. Is the mode of the previous question good if ¢g is implemented as a randomly ini-
tialized global counter? That is, the value of ¢y used to encrypt the i*" message is
set to IV 4+ ¢ mod 2", where the initial value of the counter IV is chosen uniformly
at random (i.e. IV < {0,1}").

3. Is the mode of the previous question good if ¢y is implemented as the encryption
(with a key independent from the encryption key of the mode itself) of a global
counter initialised to zero? That is, the value of ¢y used to encrypt the i*® message
is set to £(K', (i mod 2)), with k' < {0,1}* a secret key.



Q. 3: One proposes a variant of the above mode, where the encryption of mql|...||my
with the key k and initialization vector xg is defined for all i as ¢; = m;@x;; x; = E(k, x-1).

1. Give the decryption procedure for this mode.

2. Based on your knowledge of mode of operations, explain why this is a good mode
if x is implemented as a global variable initialized to zero for the first message
and not reset between different messages. (For instance, this means that if one
starts by encrypting the two two-block messages m1||mgo and m/||m), one has ¢}, =
mh @ E4(k,0), with £4(k,0) = E(k, E(k, E(k, E(k,0)))).)

Exercise 6: RSA-CRT

In the following questions, N = pq for prime numbers p and ¢; e,d € (Z/ (N)Z)*\{1}
such that ed =1 mod ¢(N); P:Z/NZ — 7Z/NZ is defined by m +— m® mod N, and its
inverse P! is defined by m — m? mod N.

Q. 1: Let C,=gx (¢! modp); Cy=px (p~! mod gq).

1. Compute the following: C};, mod p; C,, mod ¢; C; mod p; C; mod gq.

Q. 2: Let 0 <z < N be such that x = 2, mod p; x =z, mod q.

1. Using (implicitly) the Chinese Remainder Theorem (CRT), give the value of z in
function of Cp, z,, Cy, x4 and N.

Q. 3: A user wishes to implement P~! by computing the exponentiation to d using the
CRT.

1. Explain (briefly) why if P and P~! are used within an RSA cryptosystem, a CRT
implementation may only be used by someone knowing the private key

2. Give the details of such an implementation, that first reduces the input mod p and
mod g, performs the exponentiation over these residues, and recombines the result
using the CRT, and justify its correctness.

Q. 4: We now want to show that if a single fault occurs during the CRT computation
of m? mod N, the faulty result may be used to factor N. Let u = m? mod N be the
expected result of the computation and v be a faulty result such that v =u mod p, v Z u
mod gq.

1. Give an expression for a := u® mod N in function of m, C,, Cy and N.

2. Give an expression for b := v® mod N in function of m, C,, Cy, N, and an unknown
quantity x.

3. Show that gcd((a — b), N) reveals a non-trivial factor of N.

Q. 5:

1. Conclude on the importance of protecting RSA-CRT implementations against faulty
computations.



