Introduction to cryptology (GBIN8U16) Collision-based attacks

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-04-04

Collision-based attacks

^{2018–04–04} 1/23

Collisions recap

Collision

A collision in a function $\mathcal{F} : \mathcal{I} \to \mathcal{O}$ is a pair of two distinct inputs that evaluate to the same image, i.e. $a, b \neq a$ s.t. $\mathcal{F}(a) = \mathcal{F}(b)$

- Collisions always exist if $\#\mathcal{O} < \#\mathcal{I}$
- "Birthday paradox": If all outputs of \mathcal{F} are independent and uniformly random (\mathcal{F} is a "random function"), one may expect to find one collisions among $\sqrt{\#\mathcal{O}}$ inputs
 - *N* elements define $\approx N^2$ pairs, which have independent probability 1/#O of forming a collision

For a hash function $\mathcal{H}:\{0,1\}^* \to \{0,1\}^n,$ it should be *hard* to find collisions

▶ *n* must be such that $2^{n/2}$ is large, e.g. more than 2^{128} , i.e. $n \ge 256$

Typical impact of hash function collisions: hash & sign schemes

• Ex. RSA-(P)FDH: input $\mathcal{H}(m)$ to the OWP \Rightarrow hash collision \Rightarrow identical signatures

CBC recall: $c_i = \mathcal{E}_k(m_i \oplus c_{i-1})$, with $\mathcal{E}_k : \{0,1\}^n \to \{0,1\}^n$ a block cipher using a key k

- \mathcal{E}_k is a permutation $\Rightarrow \mathcal{E}_k(a) = \mathcal{E}_k(b) \Leftrightarrow a = b$
- So $c_i = c_j \Leftrightarrow m_i \oplus c_{i-1} = m_j \oplus c_{j-1} \Leftrightarrow c_{i-1} \oplus c_{j-1} = m_i \oplus m_j$
- So a collision in the output blocks of CBC encryption reveals information about the messages (next week (?): how to exploit that)

Note that the input $c_{i-1} \oplus m_i$ is either

- Uniformly random if c_{i-1} is an IV
- (Inductively) the evaluation of \mathcal{E}_k on a random input
 - ${\scriptstyle \blacktriangleright}$ Hard to distinguish from random if ${\cal E}$ is a "good" block cipher

If ${\mathcal E}$ is a good block cipher:

- $\,\,$ Inputs to ${\cal E}$ in CBC mode are (close to) uniformly random
- A collision in the inputs happens w.h.p. after $2^{n/2}$ blocks
- ▶ \Rightarrow One should not encrypt more than $2^{n/2}$ blocks with the same key
- (In fact, one should encrypt *much less* than $2^{n/2}$ blocks)
- \Rightarrow Be careful when using ciphers with small block size (e.g. 64 bits)

To compute the discrete logarithm of g^a in $\mathbb{G} = \langle g \rangle$ of order N, one may:

- **I** Compute $L_0[i] = g^{ri}$ for $r \approx \sqrt{N}$, $i \in [0, r]$
- **2** Compute $L_1[i] = g^{a-i} = g^a/g^i$ for $i \in [0, r]$
- **B** Search for a match (a "collision") in the lists L_0 and L_1
 - All the values gⁱ, i = 0,..., N − 1 are distinct (g is an element of proper order N)
 - $L_0[i] = L_1[j] \Leftrightarrow ri = a j \pmod{N}$, so a = ri + j

In this case, the collision is *guaranteed* to be found after at most $\approx r$ group operations

Find a collision in $\{\mathcal{F}(i), i \in [0, M]\}$ for some M (e.g. $\approx \sqrt{\#O}$) The easy way:

- Incrementally store the $\mathcal{F}(i)$ in a data structure w/ efficient insertion & comparison
 - Sorted list, hash table, etc.
- 2 Look for a duplicate at every insertion

Quite simple; easily parallelizable; huge memory complexity

Objective: decreasing the memory complexity of collision search

- One idea: if $\mathcal{O} \subseteq \mathcal{I}$, look at iterates of \mathcal{F} : compute $\mathcal{F}(x)$, $\mathcal{F}(\mathcal{F}(x))$, etc. for some x
- If $\mathcal{F}^{i}(x) = \mathcal{F}^{j}(x)$, then $\mathcal{F}^{i-1}(x)$ and $\mathcal{F}^{j-1}(x)$ form a collision for \mathcal{F}
- Question 1: how soon does such an event happen?
- Question 2: how is this useful?

Rho (ρ) structure of $\mathcal{F}^r(x)$, $r \in \mathbb{N}$:

If *Fⁱ(x)* = *F^j(x)*, *i < j* the smallest values where this happens, then *Fⁱ(x)* = *F^{i+k(j-i)}(x)*

$$\Rightarrow \mathcal{F}^{r}(x)$$
 has a *cycle* of length $j - i$

$$\Rightarrow \mathcal{F}^{r}(x)$$
 has a *tail* of length *i*

Proposition

For a random function \mathcal{F} , for a random starting point x, the expected cycle and tail length of $\mathcal{F}^{r}(x)$ are both $\approx \sqrt{\#\mathcal{O}}$

 \Rightarrow One can look for collisions in $\mathcal{F}^{r}(x)$ instead of $\mathcal{F}(\cdot)$ directly

Collision finding: Pollard ρ (A. 2)

To find a collision in \mathcal{F} , find the tail (λ) and cycle (μ) length of $\mathcal{F}^r(x)$ for some x

- Can be done with constant (in *F*'s parameter sizes) memory, using Floyd's cycle-finding algorithm:
- **1** Compute $\mathcal{F}^{i}(x)$, $\mathcal{F}^{2i}(x)$ in parallel, i = 1, ...

2 Find k s.t.
$$\mathcal{F}^k(x) = \mathcal{F}^{2k}(x)$$

- Most likely, $\mathcal{F}^{k-1}(x) = \mathcal{F}^{2k-1}(x)$, so the collision is "trivial"
- (But one has $k \lambda \equiv 2k \lambda \equiv \lambda + 2(k \lambda) \mod \mu$, so $k \equiv 0 \mod \mu$)
- **B** Find k' s.t. $\mathcal{F}^{k'}(x) = \mathcal{F}^k(x)$; set $\mu = k' k$
- 4 Compute $\alpha = \mathcal{F}^{\mu}(x)$; find k'' s.t. $\mathcal{F}^{\mu+k''}(x) = \alpha$; set $\lambda = \alpha \mu$
- **5** $\mathcal{F}^{\lambda-1}(x)$ and $\mathcal{F}^{\lambda+\mu-1}(x)$ form a non-trivial collision

 \Rightarrow Constant memory complexity, time complexity = $\Theta(\sqrt{\#O})$, with small constant

Let $\mathcal{F}^{r}(0)$ be such that $\lambda = 193$, $\mu = 171$ $\cdot -193 \equiv 149 \mod 171$ $\cdot \text{ At } i = 342 = 193 + 149$, $i - 193 = 149 \equiv 149 \mod 171$ $\cdot \text{ And } 2i - 193 = 193 + 2 \times 149 \equiv -149 + 2 \times 149 \mod 171 \equiv 149 \mod 171$ $\cdot \mathcal{F}^{342}(0) = \mathcal{F}^{684}(0) = \mathcal{F}^{513}(0)$ $\cdot \mu = 513 - 342 = 171$ $\cdot \mathcal{F}^{193}(0) = \mathcal{F}^{364}(0) \Rightarrow \lambda = 193$ $\cdot \mathcal{F}^{192}(0) \text{ and } \mathcal{F}^{363}(0) \text{ form a collision}$

Parallel collision search

- Limitation of the ρ approach: it is sequential
- In the real world, one wants parallel approaches to hard problems (if possible)
- Still with memory << time</p>
- \Rightarrow Parallel collision search (van Oorschot & Wiener, 1999)
 - Define a *distinguished property* for the outputs of *F* (e.g. *F*(*x*) starts with *z* zeroes for some *z*)
 - For as many threads t, compute "chains" of α_i = Fⁱ(s_t) for a random s_t until α_i is distinguished, then store (s_t, α_i, i) e.g. in a hash table, then start again

• If
$$(s_t, \alpha_i, i)$$
, $(s_{t'}, \alpha_j, j)$ are s.t. $\alpha_i = \alpha_j$, $i < j$, compute $s'_{t'} = \mathcal{F}^{j-i}(s_{t'})$; find k s.t. $\mathcal{F}^k(s_t) = \mathcal{F}^k(s'_{t'})$

PCS comments

- One must choose the distinguished property s.t.
 - Not so many points are distinguished (to limit memory complexity)
 - Recomputing a chain from the start is not too long (to limit time complexity)
- If (s_t, α_i, i) , $(s_{t'}, \alpha_j, j)$ are s.t. $\mathcal{F}^k(s_{t'}) = s_t$ for some k, the collision is trivial
- If a chain enters a cycle w/o distinguished points, it never terminates
- For a "well-chosen" distinguishing property, ≈ optimal speed-up: T threads decrease running-time by a factor T

More collision-based attacks: TMTO

- Consider a key-recovery attack on a block cipher: one wants to find a secret key k used with E
- In a chosen-plaintext scenario → e.g. inverting x → E(x,0): a "random" function
- Can be done with time = 2^{κ} , negligible memory
- Assume that one can afford a *huge offline* precomputation once
 - Can be done with memory = 2^κ, negligible (?) online time (after a precomputation of time 2^κ)
- Something in between?

 \Rightarrow Can use a *time-memory tradeoff* to speed-up the key search (Hellman, 1980)

• (May be used to invert other functions as well)

TMTO: the idea

Offline (precomputation) phase:

- Form many iteration chains for x → E(x,0), for random starting points s, storing the starting and ending points α in e.g. a hash table
 - ▶ That is, compute $s \to s^0 \to s^1 \to ...$, with $s^0 = \mathcal{E}(s, 0)$, $s^1 = \mathcal{E}(s^0, 0)$, etc.
- Use $\approx M$ chains of length $\approx T$
 - The precomputation takes time MT

Online phase:

- Ask for $c_0 = \mathcal{E}(k, 0)$
- Compute the chain $c_0 \rightarrow c_0^0 \rightarrow \ldots$ starting at c_0
- Search a collision of this chain with one of the M stored ending points α_i
- Restart computing the chain ending in α_i from s_i , find t s.t. $\mathcal{E}(s_i^t, 0) = c_0 \Rightarrow k = s_i^t$

This online phase is successful if c_0 is part of a chain

- The memory complexity is M
- The online phase (if successful) takes time T (ignoring the cost of searching for collisions among stored ending points)
- The success probability is $\approx MT/2^{\kappa}$ (assuming the all chains are distinct)
 - Take $MT \approx 2^{\kappa}$?
 - ▶ Does not work: when $MT^2 \approx 2^{\kappa}$, new chains collide with exisiting ones w.h.p. \rightarrow does not cover more keyspace
 - For instance, one chain of length $2^{\kappa/2}$ forms a ρ w.h.p.
 - Take $M = T = 2^{\kappa/3} \Rightarrow$ success probability of $2^{-\kappa/3}$

TMTO: more comments

- One may increase the success probability of Hellman's TMTO by considering N "independent" mappings $x \mapsto \varphi(\mathcal{E}(x, 0))$
 - E.g., take φ to be a bit permutation
- If $N = M = T \approx 2^{\kappa/3}$, the success probability ≈ 1 , the total time and memory complexities are $MN = TN = 2^{2\kappa/3}$
- In practice, one would (probably) want the memory complexity to be << the time complexity
- In practice, checking if $c_0^i = \alpha$ for some α is slow (memory accesses are slow compared to computations) \Rightarrow only use α with a distinguished property \Rightarrow only check when c_0^i is distinguished too

- If one wants to invert a permutation, Hellman's TMTO → Baby-step/Giant-step
 - No chain collisions \Rightarrow better complexity
- This TMTO is somehow similar to PCS, but only one collision is useful!

Suppose one has a good block cipher $\mathcal{E}: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$, with a *small* κ (e.g. 64) How can one define \mathcal{E}' from \mathcal{E} with a *larger* key?

- One idea: "double-encryption": Take $\mathcal{E}'(k_0 || k_1, \cdot) = \mathcal{E}(k_1(\mathcal{E}(k_0, \cdot)))$
- This is quite simple
- But doesn't really work...

Assume $n \ge 2\kappa$ and one knows that $\mathcal{E}'(k_0 || k_1, 0) = c_0$

- **1** Compute $L_0[i] = \mathcal{E}(i, 0), i \in \{0, 1\}^{\kappa}$
- 2 Compute $L_1[i] = \mathcal{E}^{-1}(i, c_0), i \in \{0, 1\}^{\kappa}$
- **3** Search for a match between L_0 and L_1
 - All collisions $L_0[x] = L_1[y]$ give a candidate x || y for $k_0 || k_1$
 - The time complexity is $pprox 2^\kappa \Rightarrow$ not much better than for ${\mathcal E}$
 - (But memory complexity increases to 2^{κ})
 - (And an attack interrupted after t tries has success prob. $\approx t^2/2^{2\kappa}$ instead of $t/2^{\kappa}$)

As double-encryption does not increase security so much, one may instead:

- ▶ Use "triple-encryption" (this time not so bad, but quite slow)
 ~> Triple-DES :S
- Use an "FX" construction: $\mathcal{E}'(k_0||k_1, x) = \mathcal{E}(k_0, x \oplus k_1) \oplus k_1$ (fast; not so bad, but not ideal)
- Use combinations of the two

CTR recall: $c_i = \mathcal{E}_k(\operatorname{ctr}_i) \oplus m_i$, with $\mathcal{E}_k : \{0,1\}^n \to \{0,1\}^n$ a block cipher using a key k, and ctr_i a *non-repeating* counter

- As \mathcal{E}_k is a permutation, $\mathcal{E}_k(\operatorname{ctr}_i)$ is distinct across all message blocks
- Assume one obtains many encryptions c_i of known messages m_i, and many encryptions c'_i of a secret message s
- One has $c_i \oplus c'_i = (m_i \oplus \mathcal{E}_k(x)) \oplus (s \oplus \mathcal{E}_k(y))$, with $x \neq y$

$$\Rightarrow c_i \oplus c'_j \oplus m_i = \mathcal{E}_k(x) \oplus \mathcal{E}_k(y) \oplus s \neq s$$

 The secret s can be recovered from enough (e.g. ≈ 2^{2n/3}) such relations (McGrew 2013; Leurent & Sibleyras, 2018)