Introduction to cryptology (GBIN8U16)
>

Collision-based attacks

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-1jk.imag.fr/membres/Pierre.Karpman/tea.html

2018-04-04

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

Collisions recap

Collision

A collision in a function F : Z — O is a pair of two distinct inputs
that evaluate to the same image, i.e. a, b+ as.t. F(a) = F(b)

» Collisions always exist if #0O < #7Z
» “Birthday paradox”: If all outputs of F are independent and
uniformly random (F is a “random function”), one may
expect to find one collisions among +/#O inputs
» N elements define ~ N? pairs, which have independent
probability 1/#0O of forming a collision

Collision-based attacks AT)

Collisions recap in crypto: hash functions

For a hash function H: {0,1}* - {0,1}", it should be hard to find
collisions

» n must be such that 2"/2 is large, e.g. more than 2128 j.e.
n > 256

Typical impact of hash function collisions: hash & sign schemes

> Ex. RSA-(P)FDH: input #(m) to the OWP = hash collision
= identical signatures

Collision-based attacks AT B

Collisions recap in crypto: CBC

CBC recall: ¢j =E&x(m; ® ¢j—1), with £, : {0,1}" - {0,1}" a block
cipher using a key k
» Ex is a permutation = £,(a) =Ex(b) < a=b
»SoCi=CeEemec1=mec.] <G 1®c1=mem;
» So a collision in the output blocks of CBC encryption reveals

information about the messages (next week (?): how to
exploit that)

Note that the input ¢;_1 ® m; is either

» Uniformly random if ¢;_1 is an IV
> (Inductively) the evaluation of £, on a random input
» Hard to distinguish from random if £ is a “good" block cipher

Collision-based attacks AT A9

Collisions recap in crypto: CBC (2)

If £ is a good block cipher:

> Inputs to £ in CBC mode are (close to) uniformly random
» A collision in the inputs happens w.h.p. after 2"/2 blocks

» = One should not encrypt more than 2"/2 blocks with the
same key

» (In fact, one should encrypt much less than 2"/? blocks)

= Be careful when using ciphers with small block size (e.g. 64
bits)

Collision-based attacks AT G

Collisions recap: Discrete logarithm computation

To compute the discrete logarithm of g in G = (g) of order N,
one may:

Compute Lo[i] = g" for rx /N, i €[0,r]
Compute L1[i]=g*" = g?/g’ for i € [0, r]
Search for a match (a “collision”) in the lists Ly and L;

» All the values g’,i=0,...,N -1 are distinct (g is an element
of proper order N)

> Loli]=Li[j] e ri=a-j (mod. N),soa=ri+j

In this case, the collision is guaranteed to be found after at most
~ r group operations

Collision-based attacks AT Gyl

Collision finding: how?

Find a collision in {F (i), i € [0, M]} for some M (e.g. ~ /#O)
The easy way:

Incrementally store the F(i) in a data structure w/ efficient
insertion & comparison

» Sorted list, hash table, etc.

Look for a duplicate at every insertion

Quite simple; easily parallelizable; huge memory complexity

Collision-based attacks AT 7908

Collision finding: memoryless, sequential

Objective: decreasing the memory complexity of collision search
> One idea: if O cZ, look at iterates of F: compute F(x),
F(F(x)), etc. for some x
- If Fi(x) = F/(x), then F'~1(x) and F/71(x) form a collision
for F
» Question 1: how soon does such an event happen?

» Question 2: how is this useful?

Collision-based attacks AT ()

Collision finding: Pollard p (A. 1)

Rho (p) structure of F(x), r e N:

- If Fi(x) = F/(x), i <j the smallest values where this
happens, then F'(x) = F*kU=)(x)

» = F"(x) has a cycle of length j —i
» = F'(x) has a tail of length i

Proposition

For a random function JF, for a random starting point x, the
expected cycle and tail length of F'(x) are both ~ \/#O

= One can look for collisions in F"(x) instead of F(-) directly

Collision-based attacks 2018-04-04 9 /23

Collision finding: Pollard p (A. 2)

To find a collision in F, find the tail () and cycle (1) length of
F'(x) for some x

» Can be done with constant (in F's parameter sizes) memory,
using Floyd's cycle-finding algorithm:
Compute F'(x), F(x) in parallel, i=1,...
Find k s.t. FX(x) = F2*(x)
» Most likely, F*(x) = F2*(x), so the collision is “trivial”
» (But one has k—A=2k-A=X+2(k-X) mod u, so k=0
mod 1)
Find k' s.t. F¥(x) = F¥(x); set p = k' - k
Compute o = F*(x); find k" s.t. f”*k"(x) =q;set \=a-pu
FAL(x) and FA*#71(x) form a non-trivial collision
= Constant memory complexity, time complexity = ©(\/#0O),
with small constant

Collision-based attacks AT T(5)/208)

Collision finding: Pollard p example

Let

>

F'(0) be such that A =193, u =171
—-193 =149 mod 171

» At i=342=193+149, j—193 =149 =149 mod 171
» And 2/ =193 =193 +2x 149 =-149 + 2 x 149 mod 171 = 149

mod 171

R]_-342(0) — f-684(0) — 7513(0)

v

p=513-342=171
F193(0) = F77°*(0) = A =193

- F192(0) and F3%3(0) form a collision

Collision-based attacks

2018-04-04 11/23

Parallel collision search

» Limitation of the p approach: it is sequential

> In the real world, one wants parallel approaches to hard
problems (if possible)

> Still with memory <« time

= Parallel collision search (van Oorschot & Wiener, 1999)

> Define a distinguished property for the outputs of F (e.g.
F(x) starts with z zeroes for some z)

» For as many threads t, compute “chains” of «a; = Fi(st) for a
random s; until «; is distinguished, then store (s;, o, i) e.g.
in a hash table, then start again

. If (st, i, i), (S, v, j) are s.t. aj =, i <j, compute

sl = Fii(sp); find k s.t. F¥(s;) = F¥(sl)

Collision-based attacks AT 11908

PCS comments

One must choose the distinguished property s.t.
» Not so many points are distinguished (to limit memory
complexity)
» Recomputing a chain from the start is not too long (to limit
time complexity)
If (se, i), (ser,,j) are s.t. F5(sp) = s; for some k, the
collision is trivial
If a chain enters a cycle w/o distinguished points, it never
terminates
For a “well-chosen” distinguishing property, ~ optimal
speed-up: T threads decrease running-time by a factor T

Collision-based attacks AT 13908

More collision-based attacks: TMTO

» Consider a key-recovery attack on a block cipher: one wants
to find a secret key k used with £

> In a chosen-plaintext scenario ~ e.g. inverting x — £(x,0): a
“random” function

» Can be done with time = 2", negligible memory

» Assume that one can afford a huge offline precomputation
once

» Can be done with memory = 2, negligible (?) online time
(after a precomputation of time 2%)

» Something in between?

= Can use a time-memory tradeoff to speed-up the key search
(Hellman, 1980)

> (May be used to invert other functions as well)

Collision-based attacks AT 1Y)

TMTO: the idea

Offline (precomputation) phase:

» Form many iteration chains for x » £(x,0), for random
starting points s, storing the starting and ending points « in
e.g. a hash table

0 1

» That is, compute s - s® - s! — ... with s = £(s,0),
st =£(s%,0), etc.
» Use » M chains of length ~ T
» The precomputation takes time MT

Collision-based attacks AR T1G/08)

TMTO: the idea (cont.)

Online phase:
» Ask for cg = E(k,0)
» Compute the chain ¢ —» cg — ... starting at ¢y

» Search a collision of this chain with one of the M stored
ending points «;

» Restart computing the chain ending in «; from s;, find t s.t.
E(sf,0)=co =k =s!

This online phase is successful if ¢g is part of a chain

Collision-based attacks 20 e e (6708

TMTO: comments

» The memory complexity is M

» The online phase (if successful) takes time T (ignoring the
cost of searching for collisions among stored ending points)
» The success probability is ¥ MT /2" (assuming tha all chains
are distinct)
» Take MT ~ 277
» Does not work: when MT? ~ 2% new chains collide with
exisiting ones w.h.p. ~ does not cover more keyspace

> For instance, one chain of length 25/ forms a p w.h.p.
» Take M = T = 2%/3 = success probability of 27%/3

Collision-based attacks AT 177908

TMTO: more comments

One may increase the success probability of Hellman’s TMTO
by considering N “independent” mappings x — ¢(E(x,0))

» E.g., take ¢ to be a bit permutation
If N=M =T ~ 253 the success probability ~ 1, the total
time and memory complexities are MN = TN = 22r/3

In practice, one would (probably) want the memory
complexity to be <« the time complexity

» In practice, checking if cé = o for some « is slow (memory
accesses are slow compared to computations) = only use «
with a distinguished property = only check when c(g is
distinguished too

Collision-based attacks 20 e 18)D8

TMTO: even more comments

» If one wants to invert a permutation, Hellman's TMTO ~
Baby-step/Giant-step
> No chain collisions = better complexity
» This TMTO is somehow similar to PCS, but only one collision
is useful!

Collision-based attacks 2018-04-04 19/23

More collision-based attacks: MiTM

Suppose one has a good block cipher
£:{0,1}*x{0,1}" - {0,1}", with a small k (e.g. 64)
How can one define £’ from £ with a larger key?
» One idea: “double-encryption”: Take
&' (kollky,) = E(ki(E(ko,-))
» This is quite simple

» But doesn’t really work...

Collision-based attacks R a0 () D8

Meet-in-the-Middle: how?

Assume n > 2x and one knows that &'(ko|lk1,0) = co
Compute Lo[i] = &£(i,0), i €{0,1}"
Compute L1[i] =E7 (i,), i € {0,1}*
Search for a match between Ly and L;
» All collisions Lo[x] = L1[y] give a candidate x||y for ko||ky

» The time complexity is » 2% = not much better than for £

> (But memory complexity increases to 2")

> (And an attack interrupted after t tries has success prob.
~ t2/22" instead of t/2%)

Collision-based attacks AT 1L 8

Alternatives to double encryption

As double-encryption does not increase security so much, one may
instead:

> Use “triple-encryption” (this time not so bad, but quite slow)
~ Triple-DES :S

> Use an “FX" construction: &' (ko|lk1,x) = E(ko, x ® k1) ® k1
(fast; not so bad, but not ideal)

» Use combinations of the two

Collision-based attacks 20 e 0D) D

More (non-collision)-based attacks: CTR mode

CTR recall: ¢; = Ex(ctr;) @ m;, with £, :{0,1}" - {0,1}" a block
cipher using a key k, and ctr; a non-repeating counter

» As Ei is a permutation, E(ctr;) is distinct across all message
blocks

» Assume one obtains many encryptions ¢; of known messages
mj, and many encryptions c; of a secret message s

> One has ;@ ¢/ = (m; & Ex(x)) ® (s ® Ex(y)), with x # y
s C,'GBCJ{@m,'ng(X)GB(‘:k(y)@SiS

» The secret s can be recovered from enough (e.g. ~ 22"/3)
such relations (McGrew 2013; Leurent & Sibleyras, 2018)

Collision-based attacks AT Y

