

Pierre Karpman

pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-03-28

The RSA permutation family

- Let N = pq, with p, q prime numbers
- ▶ Let *e* be s.t. $gcd(e, \varphi(N) = (p-1)(q-1)) = 1$
 - ▶ In practice, e is often fixed to 3 or 65537
- ▶ The RSA permutation \mathcal{P} over $\mathbb{Z}/N\mathbb{Z}$ is given by $m \mapsto m^e$
- The inverse \mathcal{P}^{-1} is given by $m \mapsto m^d$, where $ed \equiv 1 \mod \varphi(N)$
- \triangleright N, e are the *public parameters* defining ${\cal P}$
- N, e, d are the private parameters defining \mathcal{P} , \mathcal{P}^{-1}

Assumption: Given only the public parameters, it is "hard" to invert $\ensuremath{\mathcal{P}}$

RSA for PKC

The objective: use RSA to build

- Public-key (asymmetric) encryption
 - Can then be used for asymmetric key exchange
- Public-key signatures

These schemes will need to satisfy the usual security notions

- For encryption: IND-CPA/CCA ("semantic security")
- For signatures: Existential unforgeability under chosen-message attacks (EUF-CMA)

IND-CCA for Public-Key encryption

IND-CCA for (Enc, Dec): An adversary cannot distinguish $\operatorname{Enc}(pk_C,0)$ from $\operatorname{Enc}(pk_C,1)$, when given (restricted) oracle access to $\operatorname{Dec}(sk_C,\cdot)$ oracle:

- 1 The Challenger chooses a key pair (pk_C, sk_C) , a random bit b, sends $c = \text{Enc}(pk_C, b)$, pk_C to the Adversary
- **2** The Adversary may repeatedly submit queries $x_i \neq c$ to the Challenger
- **1** The Challenger answers a query with $Dec(sk_C, x_i) \in \{0, 1, \bot\}$
 - ► This assumes w.l.o.g. that the domain of Enc is {0,1}, and that decryption may fail
- The Adversary tries to guess b

EUF-CMA for Public-Key signatures

EUF-CMA for (Sig, Ver): An adversary cannot forge a valid signature σ for a message m such that $Ver(pk_C, \sigma, m)$ succeeds, when given (restricted) oracle access to $Sig(sk_C, \cdot)$:

- **1** The Challenger chooses a pair (pk_C, sk_C) and sends pk_C to the Adversary
- 2 The Adversary may repeatedly submit queries m_i to the Challenger
- **3** The Challenger answers a query with $\sigma_i = \text{Sig}(sk_C, m_i)$
- 4 The Adversary tries to forge a signature σ_f for a message $m_f \neq_i m_i$, s.t. $\text{Ver}(pk_C, \sigma_f, m_f) = \top$

RSA Encryption: first attempt

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Define:

$$\mathsf{Enc}(pk = (N, e), m) = \mathcal{P}(m) = (m^e \mod N)$$

►
$$Dec(sk = (N, e, d), c) = \mathcal{P}^{-1}(c) = (c^d \mod N)$$

Not randomized ⇒ fails miserably, not IND-CCA

When receiving $c = \mathcal{P}(b)$, the Adversary compares with $c_0 = \mathcal{P}(0)$, $c_1 = \mathcal{P}(1)$

More issues with raw RSA

- If m, e are small, it may be that $m^e \mod N = m^e$ (over the integers) \Rightarrow trivial to invert
 - Example: N is of 2048 bits, e = 3, m is a one-bit challenge: adding 512 random bits of padding before encrypting does not provide IND-CCA security!
- Consider a *broadcast* setting where m is encrypted as $c_i = m^3 \mod N_i$, $i \in [1,3]$. Suppose that $\forall i, m < N_i < c_i$. Using the CRT, one can reconstruct $m^3 \mod N_1 N_2 N_3 = m^3$ and retrieve m.
 - Even random padding might not prevent this attack, if too structured (Hastad, Coppersmith)

More issues with (semi-)raw RSA

A very useful result for analysing the security of RSA is due to Coppersmith (1996):

Finding small modular roots of univariate polynomials

Let P be a polynomial of degree k defined modulo N, then there is an efficient algorithm that computes its roots that are less than $N^{1/k}$

- The complexity of the algorithm is polynomial in k (but w. a high degree)
- Example application: if $c = (2^k B + x)^3 \mod N$ is an RSA image, B is known and of size $2/3 \log(N)$, one can find x of size $k < 1/3 \log(N)$ by solving $(2^k B + k)^3 c = 0$
- ullet Other applications: in the previous slide; in slide #13, ...

Proper RSA-ENC

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Let Pad, Pad⁻¹ be a padding function and its inverse. Define:

- $\mathsf{Enc}(pk = (N, e), m) = \mathcal{P}(\mathsf{Pad}(m)) = (\mathsf{Pad}(m)^e \mod N)$
- ► $Dec(sk = (N, e, d), c) = Pad^{-1}(\mathcal{P}^{-1}(c)) = Pad^{-1}(c^d \mod N)$

Necessary conditions on Pad:

- It must be invertible
- ▶ It must be randomized (with a large-enough number of bits)
- For all m, N, e, $Pad(m)^e$ must be larger than N

OAEP: A good padding function for RSA-ENC

OAEP: Optimal Asymmetric Encryption Padding (Bellare & Rogaway, 1994):

- Let $k = \lfloor \log(N) \rfloor$, κ be a security parameter
- Let $\mathcal{G}:\{0,1\}^\kappa \to \{0,1\}^n$, $\mathcal{H}:\{0,1\}^n \to \{0,1\}^\kappa$ be two hash functions
- ▶ Define Pad(x) as $(y_L||y_R) = x \oplus \mathcal{G}(r)||r \oplus \mathcal{H}(x \oplus \mathcal{G}(r))$, where $r \xleftarrow{\$} \{0,1\}^{\kappa}$
- One has $x = \operatorname{Pad}^{-1}(y_L || y_R) = y_L \oplus \mathcal{G}(y_R \oplus \mathcal{H}(y_L))$

More on OAEP

- OAEP essentially uses a two-round Feistel structure
- To be instantiated, it requires two hash functions ${\cal H}$ and ${\cal G}$ with variable output size
- A possibility is to use a single XOF $\mathcal{X}:\{0,1\}^* \to \{0,1\}^*$, such as SHAKE-128

OAEP: Why does it work (kind of)?

Intuitively, full knowledge of $(y_L||y_R)$ is necessary to invert:

- If part of y_L is unknown, $\mathcal{H}(y_L)$, then $\mathcal{G}(y_R \oplus \mathcal{H}(y_L))$ are uniformly random
- If part of y_R is unknown, $\mathcal{G}(y_R \oplus \mathcal{H}(y_L))$ is uniformly random
- In both cases $\Rightarrow x$ is hidden by a "one-time-pad"

More formally, we would like a reduction of the form:

Breaking RSA-OAEP w. Adv. $\epsilon \Rightarrow$ Inverting RSA w. Adv. $\approx \epsilon$

OAEP woes

- ► The original proof that OWP-OAEP is IND-CCA (for any good OWP) (Bellare & Rogaway, 1994) was incorrect
- Shoup showed that there can be no such proof (2001)
- But when OWP is RSA, then there is a proof (Shoup, 2001; Fujisaki & al., 2000)!
 - Exploits Coppersmith's algorithm!
- Not all the proofs are tight (e.g. Adv. $\epsilon \Rightarrow$ Adv. ϵ^2)
 - Need large parameters to give a meaningful guarantee

What about RSA-SIG now?

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Define:

- $Sig(sk = (N, e, d), m) = \mathcal{P}^{-1}(m)$
- ► $Ver(pk = (N, e), \sigma, m) = \mathcal{P}(\sigma) == m ? \top : \bot$

Why this might work:

RSA-ENC. RSA-SIG

- Correctness: $(m^d)^e \equiv m \mod N \ (\mathcal{P}^{-1} \circ \mathcal{P} = \mathcal{P} \circ \mathcal{P}^{-1} = \mathrm{Id})$
- Security: Comes from the hardness of inverting \mathcal{P} w/o knowing $d \rightsquigarrow$ forging a signature for $m \Leftarrow$ compute $\mathcal{P}^{-1}(m)$

Raw RSA-SIG: That's no good!

- If $m \equiv m' \mod N$, then $\mathcal{P}^{-1}(m) = \mathcal{P}^{-1}(m) \Rightarrow$ trivial forgeries
- $\mathcal{P}^{-1}(m)\mathcal{P}^{-1}(m') = (m^d)(m'^d) \mod N = (mm')^d$ mod $N = \mathcal{P}^{-1}(mm') \Rightarrow$ trivial forgeries over [0, N-1]

Again, some padding is necessary!

Proper RSA-SIG

Let $\mathcal{P}, \mathcal{P}^{-1}$ be RSA permutations with parameters N, e, d. Let Pad be a padding function. Define:

- $\operatorname{Sig}(sk = (N, e, d), m) = \mathcal{P}^{-1}(\operatorname{Pad}(m))$
- ► $Ver(pk = (N, e), \sigma, m) = \mathcal{P}(\sigma) == Pad(m) ? \top : \bot$
- Pad does not need to be invertible
- It does not need to be randomized (tho this can help)

What padding functions for RSA-SIG?

Let $k = \lfloor \log(N) \rfloor$

Full-Domain Hash (FDH) (Bellare & Rogaway; 1993):

- ▶ Let $\mathcal{H}: \{0,1\}^* \to \{0,1\}^k$ be a hash function, Pad $(m) = \mathcal{H}(m)$ PFDH (Coron, 2002):
 - ▶ Let $\mathcal{H}: \{0,1\}^* \to \{0,1\}^k$ be a hash function, $r \xleftarrow{\$} \{0,1\}^n$, Pad $(m) = \mathcal{H}(m||r)$
 - r is not included in the padding per se, but must be transmitted along
 - Both are pretty simple, both provable in the random oracle model (ROM)
 - The proof is tighter for PFDH ("good" security is obtained for smaller N)
 - $\,\,egin{array}{c} \mathcal{H} \end{array}$ can instantiated by a XOF

Another nice padding: PSS-R

PSS-R (Bellare & Rogaway, 1996):

- ► Let $\lfloor \log(N) \rfloor = k = k_0 + k_1 + k_2$, $\mathcal{H} : \{0,1\}^{k-k_1} \to \{0,1\}^{k_1}$, $\mathcal{G} : \{0,1\}^{k_1} \to \{0,1\}^{k-k_1}$ be two hash functions, $r \stackrel{\$}{\leftarrow} \{0,1\}^{k_0}$
- Pad: $\{0,1\}^{k_2} \rightarrow \{0,1\}^k$ is defined by $\operatorname{Pad}(x) = \mathcal{H}(x||r)||(x||r \oplus \mathcal{G}(\mathcal{H}(x||r)))$
- If $|x| < k_2$, PSS-R is invertible (then, the message m does not need to be transmitted with the signature)
- Otherwise, e.g. compute $\operatorname{Pad}(x')$ where $x' = \mathcal{I}(x)$, $\mathcal{I}: \{0,1\}^* \to \{0,1\}^{k_2}$ a hash function (then, k_2 must be "large enough")

More on PSS-R

- In fact, PSS-R may also be used as padding for RSA-ENC (Coron & al., 2002)!
 - Notice the relative similarity between PSS-R and OAEP
- Both SIG and ENC cases are provably secure in the ROM
 - In the specific case of RSA, same as OAEP

RSA-SIG: Quick implementation comments

- The signer knows N, e, d, and also the factorization $p \times q$ of N
- Thanks to the CRT, any computation mod N (in particular $m \mapsto m^d$ may be done mod p and mod q
- A CRT implementation is more efficient, as multiplying two numbers does not have a linear cost
- In fact, such CRT decomposition is a useful approach for general big number arithmetic
- → "RSA-CRT" implementations
 - More efficient, but beware of fault attacks! (That's a general warning, tho)

RSA on the side

One can also use the RSA permutation to define a PRNG (Micali & Schnorr, 1988). Let (N, e) be RSA parameters, $n = \log(N)$, then:

- **1** Start with a random (secret) seed $x_0 \in [0, 2^r]$, $2^r \ll N$
- 2 Step the generator by computing $v_i = x_{i-1}^e \mod N$
- **3** Extract the next secret state x_i from $v_i = 2^k x_i + w_i$, k = n r
- 4 Output w_i as pseudo-random bits

Question: how small can r be?

- Should be at least n/e, otherwise modular reduction may not happen
- Micali and Schnorr proposed 2n/e, which seems okay (Fouque & Zapalowicz, 2014)

RSA, DH recap, comparison

Roughly, hardness of factoring, DLOG \Rightarrow Asymmetric key exchange, public-key signatures

- Factoring → RSA: One-way permutation w. trapdoor, can be used for both
- DLOG → DH, Schnorr/DSA/...: No permutation, but same functionalities

There are some differences, tho

Some DLOG schemes properties

- For key exchange, can change the secret every time ⇒ "forward secrecy"
- For signatures, good randomness is essential! (Otherwise it breaks)
- Picking a random exponent is easy
- Picking a good group is not completely staightforward
- Some active attacks are possible
- It is possible to "break entire groups" (e.g. \mathbb{F}_p^{\times})

Some RSA properties

- Secrets are fixed ⇒ a break can compromise a long history
- No randomness needed for signatures (e.g. basic FDH),
 randomness failures don't reveal the secret
- Generating parameters is somewhat hard
- But all of them are independent (in principle)