
RSA-ENC, RSA-SIG 2018–03–28 1/24

Introduction to cryptology (GBIN8U16)
]

RSA Encryption, RSA Signatures

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018–03–28

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html


RSA-ENC, RSA-SIG 2018–03–28 2/24

The RSA permutation family

▸ Let N = pq, with p, q prime numbers
▸ Let e be s.t. gcd(e, ϕ(N) = (p − 1)(q − 1)) = 1

▸ In practice, e is often fixed to 3 or 65537

▸ The RSA permutation P over Z/NZ is given by m ↦ me

▸ The inverse P−1 is given by m ↦ md , where ed ≡ 1
mod ϕ(N)

▸ N, e are the public parameters defining P

▸ N, e, d are the private parameters defining P, P−1

Assumption: Given only the public parameters, it is “hard” to
invert P



RSA-ENC, RSA-SIG 2018–03–28 3/24

RSA for PKC

The objective: use RSA to build
▸ Public-key (asymmetric) encryption

▸ Can then be used for asymmetric key exchange

▸ Public-key signatures

These schemes will need to satisfy the usual security notions

▸ For encryption: IND-CPA/CCA (“semantic security”)

▸ For signatures: Existential unforgeability under
chosen-message attacks (EUF-CMA)



RSA-ENC, RSA-SIG 2018–03–28 4/24

IND-CCA for Public-Key encryption

IND-CCA for (Enc,Dec): An adversary cannot distinguish
Enc(pkC ,0) from Enc(pkC ,1), when given (restricted) oracle
access to Dec(skC , ⋅) oracle:

1 The Challenger chooses a key pair (pkC , skC), a random bit
b, sends c = Enc(pkC ,b), pkC to the Adversary

2 The Adversary may repeatedly submit queries xi ≠ c to the
Challenger

3 The Challenger answers a query with Dec(skC , xi) ∈ {0,1,�}
▸ This assumes w.l.o.g. that the domain of Enc is {0,1}, and

that decryption may fail

4 The Adversary tries to guess b



RSA-ENC, RSA-SIG 2018–03–28 5/24

EUF-CMA for Public-Key signatures

EUF-CMA for (Sig,Ver): An adversary cannot forge a valid
signature σ for a message m such that Ver(pkC , σ,m) succeeds,
when given (restricted) oracle access to Sig(skC , ⋅):

1 The Challenger chooses a pair (pkC , skC) and sends pkC to
the Adversary

2 The Adversary may repeatedly submit queries mi to the
Challenger

3 The Challenger answers a query with σi = Sig(skC ,mi)

4 The Adversary tries to forge a signature σf for a message
mf ≠i mi , s.t. Ver(pkC , σf ,mf ) = ⊺



RSA-ENC, RSA-SIG 2018–03–28 6/24

RSA Encryption: first attempt

Let P,P−1 be RSA permutations with parameters N, e, d . Define:

▸ Enc(pk = (N, e),m) = P(m) = (me mod N)

▸ Dec(sk = (N, e,d), c) = P−1(c) = (cd mod N)

Not randomized ⇒ fails miserably, not IND-CCA

▸ When receiving c = P(b), the Adversary compares with
c0 = P(0), c1 = P(1)



RSA-ENC, RSA-SIG 2018–03–28 7/24

More issues with raw RSA

▸ If m, e are small, it may be that me mod N = me (over the
integers) ⇒ trivial to invert

▸ Example: N is of 2048 bits, e = 3, m is a one-bit challenge:
adding 512 random bits of padding before encrypting does not
provide IND-CCA security!

▸ Consider a broadcast setting where m is encrypted as ci = m3

mod Ni , i ∈ [1,3]. Suppose that ∀i , m < Ni < ci . Using the
CRT, one can reconstruct m3 mod N1N2N3 = m3 and retrieve
m.

▸ Even random padding might not prevent this attack, if too
structured (Hastad, Coppersmith)



RSA-ENC, RSA-SIG 2018–03–28 8/24

More issues with (semi-)raw RSA

A very useful result for analysing the security of RSA is due to
Coppersmith (1996):

Finding small modular roots of univariate polynomials

Let P be a polynomial of degree k defined modulo N, then there is
an efficient algorithm that computes its roots that are less than
N1/k

▸ The complexity of the algorithm is polynomial in k (but w. a
high degree)

▸ Example application: if c = (2kB + x)3 mod N is an RSA
image, B is known and of size 2/3 log(N), one can find x of
size k < 1/3 log(N) by solving (2kB + k)3 − c = 0

▸ Other applications: in the previous slide; in slide #13, ...



RSA-ENC, RSA-SIG 2018–03–28 9/24

Proper RSA-ENC

Let P,P−1 be RSA permutations with parameters N, e, d . Let
Pad, Pad−1 be a padding function and its inverse. Define:

▸ Enc(pk = (N, e),m) = P(Pad(m)) = (Pad(m)e mod N)

▸ Dec(sk = (N, e,d), c) = Pad−1(P−1(c)) = Pad−1(cd mod N)

Necessary conditions on Pad:

▸ It must be invertible

▸ It must be randomized (with a large-enough number of bits)

▸ For all m, N, e, Pad(m)e must be larger than N



RSA-ENC, RSA-SIG 2018–03–28 10/24

OAEP: A good padding function for RSA-ENC

OAEP: Optimal Asymmetric Encryption Padding (Bellare &
Rogaway, 1994):

▸ Let k = ⌊log(N)⌋, κ be a security parameter

▸ Let G ∶ {0,1}κ → {0,1}n, H ∶ {0,1}n → {0,1}κ be two hash
functions

▸ Define Pad(x) as (yL∣∣yR) = x ⊕ G(r)∣∣r ⊕H(x ⊕ G(r)), where

r
$
←Ð {0,1}κ

▸ One has x = Pad−1(yL∣∣yR) = yL ⊕ G(yR ⊕H(yL))



RSA-ENC, RSA-SIG 2018–03–28 11/24

More on OAEP

▸ OAEP essentially uses a two-round Feistel structure

▸ To be instantiated, it requires two hash functions H and G
with variable output size

▸ A possibility is to use a single XOF X ∶ {0,1}∗ → {0,1}∗, such
as SHAKE-128



RSA-ENC, RSA-SIG 2018–03–28 12/24

OAEP: Why does it work (kind of)?

Intuitively, full knowledge of (yL∣∣yR) is necessary to invert:

▸ If part of yL is unknown, H(yL), then G(yR ⊕H(yL) are
uniformly random

▸ If part of yR is unknown, G(yR ⊕H(yL)) is uniformly random

▸ In both cases ⇒ x is hidden by a “one-time-pad”

More formally, we would like a reduction of the form:

Breaking RSA-OAEP w. Adv. ε⇒ Inverting RSA w. Adv. ≈ ε



RSA-ENC, RSA-SIG 2018–03–28 13/24

OAEP woes

▸ The original proof that OWP-OAEP is IND-CCA (for any
good OWP) (Bellare & Rogaway, 1994) was incorrect

▸ Shoup showed that there can be no such proof (2001)
▸ But when OWP is RSA, then there is a proof (Shoup, 2001;

Fujisaki & al., 2000)!
▸ Exploits Coppersmith’s algorithm!

▸ Not all the proofs are tight (e.g. Adv. ε ⇒ Adv. ε2)
▸ Need large parameters to give a meaningful guarantee



RSA-ENC, RSA-SIG 2018–03–28 14/24

What about RSA-SIG now?

Let P,P−1 be RSA permutations with parameters N, e, d . Define:

▸ Sig(sk = (N, e,d),m) = P−1(m)

▸ Ver(pk = (N, e), σ,m) = P(σ) == m ? ⊺ : �

Why this might work:

▸ Correctness: (md)e ≡ m mod N (P−1 ○P = P ○P−1 = Id)

▸ Security: Comes from the hardness of inverting P w/o
knowing d ↝ forging a signature for m ⇐ compute P−1(m)



RSA-ENC, RSA-SIG 2018–03–28 15/24

Raw RSA-SIG: That’s no good!

▸ If m ≡ m′ mod N, then P−1(m) = P−1(m) ⇒ trivial forgeries

▸ P−1(m)P−1(m′) = (md)(m′d) mod N = (mm′)d

mod N = P−1(mm′) ⇒ trivial forgeries over [0,N − 1]

Again, some padding is necessary!



RSA-ENC, RSA-SIG 2018–03–28 16/24

Proper RSA-SIG

Let P,P−1 be RSA permutations with parameters N, e, d . Let
Pad be a padding function. Define:

▸ Sig(sk = (N, e,d),m) = P−1(Pad(m))

▸ Ver(pk = (N, e), σ,m) = P(σ) == Pad(m) ? ⊺ : �

▸ Pad does not need to be invertible

▸ It does not need to be randomized (tho this can help)



RSA-ENC, RSA-SIG 2018–03–28 17/24

What padding functions for RSA-SIG?

Let k = ⌊log(N)⌋

Full-Domain Hash (FDH) (Bellare & Rogaway; 1993):

▸ Let H ∶ {0,1}∗ → {0,1}k be a hash function, Pad(m) = H(m)

PFDH (Coron, 2002):

▸ Let H ∶ {0,1}∗ → {0,1}k be a hash function, r
$
←Ð {0,1}n,

Pad(m) = H(m∣∣r)
▸ r is not included in the padding per se, but must be

transmitted along

▸ Both are pretty simple, both provable in the random oracle
model (ROM)

▸ The proof is tighter for PFDH (“good” security is obtained for
smaller N)

▸ H can instantiated by a XOF



RSA-ENC, RSA-SIG 2018–03–28 18/24

Another nice padding: PSS-R

PSS-R (Bellare & Rogaway, 1996):

▸ Let ⌊log(N)⌋ = k = k0 + k1 + k2, H ∶ {0,1}k−k1 → {0,1}k1 ,

G ∶ {0,1}k1 → {0,1}k−k1 be two hash functions, r
$
←Ð {0,1}k0

▸ Pad ∶ {0,1}k2 → {0,1}k is defined by
Pad(x) = H(x ∣∣r)∣∣(x ∣∣r ⊕ G(H(x ∣∣r)))

▸ If ∣x ∣ < k2, PSS-R is invertible (then, the message m does not
need to be transmitted with the signature)

▸ Otherwise, e.g. compute Pad(x ′) where x ′ = I(x),
I ∶ {0,1}∗ → {0,1}k2 a hash function (then, k2 must be “large
enough”)



RSA-ENC, RSA-SIG 2018–03–28 19/24

More on PSS-R

▸ In fact, PSS-R may also be used as padding for RSA-ENC
(Coron & al., 2002)!

▸ Notice the relative similarity between PSS-R and OAEP

▸ Both SIG and ENC cases are provably secure in the ROM
▸ In the specific case of RSA, same as OAEP



RSA-ENC, RSA-SIG 2018–03–28 20/24

RSA-SIG: Quick implementation comments

▸ The signer knows N, e, d , and also the factorization p × q of
N

▸ Thanks to the CRT, any computation mod N (in particular
m ↦ md may be done mod p and mod q

▸ A CRT implementation is more efficient, as multiplying two
numbers does not have a linear cost

▸ In fact, such CRT decomposition is a useful approach for
general big number arithmetic

▸ ⇒ “RSA-CRT” implementations
▸ More efficient, but beware of fault attacks! (That’s a general

warning, tho)



RSA-ENC, RSA-SIG 2018–03–28 21/24

RSA on the side

One can also use the RSA permutation to define a PRNG (Micali &
Schnorr, 1988). Let (N, e) be RSA parameters, n = log(N), then:

1 Start with a random (secret) seed x0 ∈ [0,2r [, 2r ≪ N

2 Step the generator by computing vi = xei−1 mod N

3 Extract the next secret state xi from vi = 2kxi +wi , k = n − r

4 Output wi as pseudo-random bits

Question: how small can r be?

▸ Should be at least n/e, otherwise modular reduction may not
happen

▸ Micali and Schnorr proposed 2n/e, which seems okay (Fouque
& Zapalowicz, 2014)



RSA-ENC, RSA-SIG 2018–03–28 22/24

RSA, DH recap, comparison

Roughly, hardness of factoring, DLOG ⇒ Asymmetric key
exchange, public-key signatures

▸ Factoring ↝ RSA: One-way permutation w. trapdoor, can be
used for both

▸ DLOG ↝ DH, Schnorr/DSA/...: No permutation, but same
functionalities

There are some differences, tho



RSA-ENC, RSA-SIG 2018–03–28 23/24

Some DLOG schemes properties

▸ For key exchange, can change the secret every time ⇒
“forward secrecy”

▸ For signatures, good randomness is essential! (Otherwise it
breaks)

▸ Picking a random exponent is easy

▸ Picking a good group is not completely staightforward

▸ Some active attacks are possible

▸ It is possible to “break entire groups” (e.g. F×p)



RSA-ENC, RSA-SIG 2018–03–28 24/24

Some RSA properties

▸ Secrets are fixed ⇒ a break can compromise a long history

▸ No randomness needed for signatures (e.g. basic FDH),
randomness failures don’t reveal the secret

▸ Generating parameters is somewhat hard

▸ But all of them are independent (in principle)


