
GCD, CRT, RSA 2018–03–27 1/17

Introduction to cryptology (GBIN8U16)
]

Extended GCD, RSA

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018–03–27

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

GCD, CRT, RSA 2018–03–27 2/17

Back to basics

Greatest common divisor (GCD)

The greatest common divisor of two numbers a, b ∈ N is the largest
number k, noted gcd(a,b) s.t. a = km, b = km′ for some m, m′ ∈ N

Co-primality

Two integers a, b are called coprime if gcd(a,b) = 1

Examples:

▸ gcd(n,n) = gcd(n,0) = n for any n

▸ gcd(n,1) = 1 for any n

▸ gcd(n, kn) = n for any n

▸ gcd(p,q) = 1 for any two prime numbers p, q

▸ gcd(p,n) = 1 for any n < p

GCD, CRT, RSA 2018–03–27 3/17

GCD computation

Given two integers, it is:

▸ Very important to be able to compute their gcd

▸ Very easy to do so (cool!)

↝
A nice recurrence:

▸ Let a, b ∈ N, a > b
▸ Then k = gcd(a,b) = gcd(b, a mod b)

▸ If a mod b = 0, then a = kb = qb⇒ gcd(a,b) = gcd(b,0) = b
▸ If a mod b = r , then a = km = qb + r , b = km′

▸ ⇒ km = qkm′ + r ⇒ k(m − qm′) = r ⇒ k divides r too!

GCD, CRT, RSA 2018–03–27 4/17

Euclid’s algorithm

The previous recurrence leads to Euclid’s algorithm for gcd
computation

GCD computation (recursive)

Input: a, b < a
Output: gcd(a,b)

1 If b = 0, return a

2 Return gcd(b, a mod b)

In practice, iterative (variant) versions may be preferable

GCD, CRT, RSA 2018–03–27 5/17

Binary Euclid algorithm

Binary Euclid

Input: a, b ≠ 0 < a
Output: gcd(a,b)

1 Set r ← [a mod b, a ← [b, b ←[r
2 If b = 0, return a

3 Set w ← [0
4 While a ≡ b ≡ 0 mod 2, set w ← [w + 1, a ← [a/2, b ← [b/2
5 If a (resp. b) is even, divide it by two until it becomes odd

6 Set t ← [(a − b)/2; If t = 0, return a2w

7 If t is even, divide it by two until it becomes odd. Then if
t > 0, set a ←[t else set b ← [−t, then go to step 6

GCD, CRT, RSA 2018–03–27 6/17

Binary Euclid (correctness brief)

Some quick correctness arguments

▸ After step 4, the contribution of 2 as a factor of gcd(a,b) is
fully known as w

▸ Let a′ = km = 2A + 1, b′ = km′ = 2B + 1, k = gcd(a′,b′),
gcd(k ,2) = 1

▸ Then (2A + 1 − (2B + 1))/2 = A −B = k(m −m′)/2 = km′′

▸ Then gcd(a′,b′) = gcd((a′ − b′)/2,b′) (if (a′ − b′)/2 > b′,
gcd(b′, (a′ − b′)/2) otherwise)

Why is the binary version useful?

▸ Divisions by two are just bit shifts!

GCD, CRT, RSA 2018–03–27 7/17

Extended Euclid

Let a, b, k = gcd(a,b)
▸ Then for any u, v ∈ Z,
ua + vb = ukm + vkm′ = k(um + vm′) = kw with w = um + vm′

▸ Of particular interest are any u, v s.t. um + vm′ = 1, then we
have ua + vb = k = gcd(a,b)

▸ One can easily compute such u, v by extending Euclid’s
algorithm

GCD, CRT, RSA 2018–03–27 8/17

Extended Euclid (cont.)

Extended Euclid algorithm

Input: a, b < a
Output: k = gcd(a,b), u, v s.t. ua + vb = k

1 If b = 0, return (k = a,u = 1, v = 0) ▷ 1 × a + 0 × 0 = a

2 Set r = a mod b, q = a ÷ b ▷ r = a − qb

3 Let (k ,u′, v ′)← [gcd(b, r) ▷ u′b + v ′r = k = gcd(a,b)
▷ u′b + v ′(a − qb) = k
▷ b(u′ − q) + v ′a = k

4 Return (k, v ′,u′ − q)

GCD, CRT, RSA 2018–03–27 9/17

Applications: Dividing in Z/NZ

Let a, b ∈ Z/NZ, one wants to compute a/b
▸ Assuming we know how to multiply, we just need to compute
b−1

▸ To do this, compute u, v s.t. ub + vN = 1 = gcd(b,N)
▸ If gcd(b,N) > 1, b is not invertible mod N (why?)

▸ Then ub = 1 − vN ⇒ ub = 1 mod N ⇒ u = b−1

Exercise: use this algorithm to prove that Z/NZ is a field iff N is
prime

GCD, CRT, RSA 2018–03–27 10/17

Digression: Little Fermat Theorem

Another possibility to find the inverse of a ∈ Z/NZ when N is
prime is to use the Little Fermat Theorem (LFT)

Little Fermat Theorem

Let p be a prime number, then for any 0 < a < p, one has ap−1 ≡ 1
mod p. This is implied by the more general formulation that for
any a, ap ≡ a mod p.

GCD, CRT, RSA 2018–03–27 11/17

Applications: Chinese Remainder Theorem

The (simple) Chinese Remainder Theorem (CRT)

Let m1, . . . ,mk be k pairwise coprime (positive) integers
(∀i , j gcd(mi ,mj) = 1) and x1, . . . , xk any integers (for simplicity
s.t. 0 ≤ xi < mi), then there is a unique x mod ∏i mi s.t. x ≡ xi
mod mi for all 1 ≥ i ≥ k

▸ Given x , mi , it is easy to compute xi = x mod mi

▸ The inverse problem is in fact also easy, using the extended
Euclid algorithm

Note: This theorem is very useful! (E.g. used in the admitted
Pohlig-Hellman algorithm; also nice to speed-up modular/big
number arithmetic)

GCD, CRT, RSA 2018–03–27 12/17

CRT: how?

CRT reconstruction

Input: m1, . . . ,mk , x1, . . . , xk
Output: The unique 0 ≥ x <∏mi s.t. x ≡ xi mod mi

1 Let M ← [∏i mi

2 For all 1 ≥ i ≥ k

3 Mi ← [M/mi

4 Let ai be such that aiMi ≡ 1 mod mi ▷ Computed from
gcd(Mi ,mi) = 1

5 Let Xi ← [aiMixi ▷ Xi ≡ xi mod mi ; Xi ≡ 0 mod mj≠i
6 Return ∑i Xi mod M

GCD, CRT, RSA 2018–03–27 13/17

Back to Crypto: RSA

RSA (Rivest, Shamir, Adleman, 1977) in a nutshell: a family of
“one-way permutations with trapdoor”

▸ Publicly define P that everyone can compute

▸ Knowing P, it is “hard” to compute P−1 (even on a single
point)

▸ There is a trapdoor associated w/ P
▸ Knowing the trapdoor, it is easy to compute P−1 everywhere

GCD, CRT, RSA 2018–03–27 14/17

RSA: how?

▸ Let p, q be two (large) prime numbers

▸ Let N = pq
▸ Any 0 < x < N s.t. gcd(x ,N) = 1 is invertible in Z/NZ

▸ Note that knowing x ∉ (Z/NZ)× ⇔ knowing p and q
▸ Why?

Proposition: order of (Z/NZ)×
Let N be as above, the order of the multiplicative group (Z/NZ)×
is equal to (p − 1)(q − 1). (More generally, it is equal to ϕ(N))

▸ So for any x ∈ (Z/NZ)×, xk ϕ(N)+1 = x

GCD, CRT, RSA 2018–03–27 15/17

RSA: more on how

▸ Let e be s.t. gcd(e, ϕ(N)) = 1; consider P ∶ x ↦ xe mod N

▸ P is a permutation over (Z/NZ)×

▸ Knowing e, N, it is easy to compute P
▸ Knowing e, ϕ(N), it is easy to compute d s.t. ed = 1

mod ϕ(N)
▸ Knowing d , xe , it is easy to compute x = xed

⇒ We have a permutation with trapdoor, but how good is the
latter?

GCD, CRT, RSA 2018–03–27 16/17

RSA: how secure?

Knowing ed = k ϕ(N) + 1, it is easy to find ϕ(N) (admitted)

Knowing N = pq, ϕ(N) = (p − 1)(q − 1), it is easy to find p and q

▸ ϕ(N) = pq − (p + q) + 1; p + q = −(ϕ(N) −N − 1)
▸ For any a, b, knowing ab and a + b allows to find a and b

▸ Consider the polynomial (X − a)(X − b) = X 2 − (a + b)X + ab
▸ ∆ = (a + b)2 − 4ab = (a − b)2
▸ a = ((a + b) + (a − b))/2

⇒ Knowing, N, e, d , it is easy to factor N, plus:

▸ e does (basically) not depend on N

⇒ If it is easy to compute d from N, e, it is easy to factor N, and

▸ It is a hard problem to factor N = pq when p, q are large
random primes

BUT it might not be necessary to know d to (efficiently) invert P

GCD, CRT, RSA 2018–03–27 17/17

Tomorrow: what next?

How to (properly) use the RSA permutation family to imlement:

▸ Asymmetric key exchange

▸ Public-key signatures

