Introduction to cryptology (GBIN8U16)
>

More on discrete-logarithm based schemes

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-1jk.imag.fr/membres/Pierre.Karpman/tea.html

2018-03-13

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

Signatures: what?

Objectives of a signature algorithm:
> Given (sk,pk) a key pair
» message m + secret key sk ~ signature s = Sy (m)
» message m + signature s + public key pk ~ verified message
Vi (m,s)
Informal security objectives
» Given pk, it should be hard to find sk
» Given pk, it should be hard to forge signatures

» (Variant: given access to a signing oracle O (g), it should
be hard to forge signatures)

More on DH, Signatures TS 90

Related: interactive proof of identity

Objective of a proof of ID scheme:
» Publish public identification data «
» When challenged, prove knowledge of a secret related to «
Example of a one-time scheme:
Let H be a preimage-resistant hash function, R a large set
The prover draws x R, computes and publishes X = H(x)
When challenged, reveals x
Many-time variant:
Draw x < R, compute and publish X = ’HN(X)
When challenged, reveal H"V"1(x), reset X = HN"1(x)

More on DH, Signatures A=ESE B0

A discrete-log based PolD scheme

From last week's TD (~Schnorr):
Let G = (g) be a group with a hard DLP

The prover draws x 2 R, computes and publishes X = g*
When challenged; draws r, sends R =g"

The verifier picks ¢ and sends it

The prover computes a = r + cx and sends it

[@ The verifier checks that RX¢ = g°

This can be run many times, BUT r's should be random and never
repeat!

More on DH, Signatures 2018-03-13 4/16

From PolD to signature

Differences between PolD and signatures:
> PolDs are interactive (in the verification), signatures are not
» Signatures also involve a message

One major observation:

» If the prover can convince that it doesn't control both R and
¢, interaction is unnecessary

> (Otherwise, nothing is proved)

= Fiat-Shamir transformation: generate ¢ from R with a hash
function

More on DH, Signatures AEESE GG

Schnorr signatures

To sign a message m with the key (sk, pk) pair (x, X = g*¥)
Pick r < R and compute R=g"
Compute ¢ = H(R, m)
Compute a = r + cx and output (c, a) as the signature of m
To verify a signature:
Compute R = g?/X=g%g™
Check that ¢ = H(R, m)
Important: r must (again) be random and not repeat! (Why?)

More on DH, Signatures 2018-03-13 6/16

Remember randomness (always)!

int getRandomNumber ()

return 4. // chosen by foir dice roll.
/| quaranteed to be random.

Figure: Not good for Schnorr signatures

More on DH, Signatures 2018-03-13 7/16

Where are we with dlog?

If G =(g) is a prime-order group where the DLP is hard (on
average = in the worst case (cf. TD)), then:

» Can do asymmetric key exchange
» Can do public-key signatures

For signatures we also need
» Good hash functions

» Good pseudorandom number generation

More on DH, Signatures TS GG

Some comments on dlog attacks

When G ~ [, the current dlog records are:
p| ~ 768 bits (Kleinjung et al., 2017), using a Number Field
Sieve (NFS) algorithm

» Took about 5300 core years

p| ~ 1024 bits for a trapdoored prime (Fried et al., 2017),
using a Special NFS (SNFS) algorithm

» Took about 385 core years

>

>

Note: it may be hard to decide if a prime is trapdoored

One nice (for an attacker) feature of (S)NFS:

» The largest part of the cost is a precomputation, then
computing individual dlogs is very fast

More on DH, Signatures 2018-03-13 9/16

Some more comments on dlog: small subgroup attack

Consider a semi-static key exchange,
» Where one of g? or g (say g?) is fixed
using (g) c IF;, where I has many small subgroups
» Then B must check that “g" sent by A is in the correct group
~ Otherwise, if g° is in a small group of order N, a malicious A
can learn b mod N
» ... Then b mod N’, etc.
One way to easily prevent this: use p=2g+1, g a Sophie Germain
prime
= Only a small subgroup of order 2 to check for in Fj,

More on DH, Signatures 2018-03-13 10/16

What about implementation, though?

> We need to compute g*, for a large x (e.g. 256 bits)

» Cannot just do g x g x g x...x g ~ 2% times!

- Notice that g x g = g2, g2 x g? = g* g*xg*=g'% etc.
- Also: g xg?=g3 g°>xg'®=g!8 etc

“Square & multiply” algorithm

More on DH, Signatures O I (61V/116)

Square & multiply

Square & multiply

Input x, g

Output g*
h=1
While x #0
if (x&1)
h—hxg
g§8*%8
6] X <—x>1
Return h

= Only log(x) iterations needed!
(Problem here, runtime also depends on wt(x))

More on DH, Signatures 2SS 119015

Implementation: what else?

» We also need multiplication, addition in G
> If G € F; = modular arithmetic

> Require big number multiplication, (integer) division,
remainders, addition

- = split f as e.g. fo+20%f +2128% 4+ .

» Can use dedicated arithmetic for “efficient” primes

More on DH, Signatures AEESE 110G

Implementation digression

Consider p = 2111 — 37, then
» 2111 =37 mod p
»ax 21 = 3x37 mod p
s ax 212 =3 x74 mod p
»ax28xbhx2%=abx74 mod p
» ax2%xbhx2%=abx74 mod p

> etc.

More on DH, Signatures 2018-03-13 14/16

Multiplication mod 2111 — 37

Let f = fo+2%°A + 2%+ 2%f;, g = g0 + 2201 +2%0gp + 2% g3, set
> ho = fogo + 74183 + TAHg + TAR g1
» h1 = fog1 + f1go + TAfag3 + 74182
> hy = fogo + g1 + fago + 41383
> h3 = fogz + g2 + 281 + 380
Then fg mod 211 —37 = hy+2%8hy + 250y + 284h3 mod 2111 - 37
To be complete:
» Have to reduce the h;'s mod 228 (2%7)

» Have to ensure that all f;g; can be computed with, say, a
64 x 64 — 64 multiplier (in fact, desktop CPUs have
64 x 64 — 128 multipliers)

= Modular multiplication w/o explicit division

More on DH, Signatures 2018-03-13 15 /16

What next?

In two weeks:
» Inversion in integer rings: extended Euclid algorithm
» The Chinese Remainder Theorem (CRT)

» How to do asymmetric key exchange, public key signatures
differently: RSA

More on DH, Signatures 2018-03-13 16/16

