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Signatures: what?

Objectives of a signature algorithm:

▸ Given (sk,pk) a key pair

▸ message m + secret key sk ↝ signature s = Ssk(m)

▸ message m + signature s + public key pk ↝ verified message
Vpk(m, s)

Informal security objectives

▸ Given pk, it should be hard to find sk

▸ Given pk, it should be hard to forge signatures

▸ (Variant: given access to a signing oracle O
(sk,pk), it should

be hard to forge signatures)
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Related: interactive proof of identity

Objective of a proof of ID scheme:

▸ Publish public identification data α

▸ When challenged, prove knowledge of a secret related to α

Example of a one-time scheme:

1 Let H be a preimage-resistant hash function, R a large set

2 The prover draws x
$
←ÐR, computes and publishes X = H(x)

3 When challenged, reveals x

Many-time variant:

1 Draw x
$
←ÐR, compute and publish X = H

N
(x)

2 When challenged, reveal HN−1
(x), reset X = H

N−1
(x)
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A discrete-log based PoID scheme

From last week’s TD (∼Schnorr):

1 Let G = ⟨g⟩ be a group with a hard DLP

2 The prover draws x
$
←ÐR, computes and publishes X = g x

3 When challenged; draws r , sends R = g r

4 The verifier picks c and sends it

5 The prover computes a = r + cx and sends it

6 The verifier checks that RX c
= ga

This can be run many times, BUT r ’s should be random and never
repeat!
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From PoID to signature

Differences between PoID and signatures:

▸ PoIDs are interactive (in the verification), signatures are not

▸ Signatures also involve a message

One major observation:

▸ If the prover can convince that it doesn’t control both R and
c , interaction is unnecessary

▸ (Otherwise, nothing is proved)

⇒ Fiat-Shamir transformation: generate c from R with a hash
function
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Schnorr signatures

To sign a message m with the key (sk,pk) pair (x ,X = g x
)

1 Pick r
$
←ÐR and compute R = g r

2 Compute c = H(R,m)

3 Compute a = r + cx and output (c , a) as the signature of m

To verify a signature:

1 Compute R̂ = ga
/X c

= ga
/g cx

2 Check that c = H(R̂,m)

Important: r must (again) be random and not repeat! (Why?)
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Remember randomness (always)!

Figure: Not good for Schnorr signatures
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Where are we with dlog?

If G = ⟨g⟩ is a prime-order group where the DLP is hard (on
average ≡ in the worst case (cf. TD)), then:

▸ Can do asymmetric key exchange

▸ Can do public-key signatures

For signatures we also need

▸ Good hash functions

▸ Good pseudorandom number generation
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Some comments on dlog attacks

When G ≈ F∗p, the current dlog records are:

▸ ∣p∣ ≈ 768 bits (Kleinjung et al., 2017), using a Number Field
Sieve (NFS) algorithm

▸ Took about 5300 core years

▸ ∣p∣ ≈ 1024 bits for a trapdoored prime (Fried et al., 2017),
using a Special NFS (SNFS) algorithm

▸ Took about 385 core years

Note: it may be hard to decide if a prime is trapdoored

One nice (for an attacker) feature of (S)NFS:

▸ The largest part of the cost is a precomputation, then
computing individual dlogs is very fast
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Some more comments on dlog: small subgroup attack

Consider a semi-static key exchange,

▸ Where one of ga or gb (say gb) is fixed

using ⟨g⟩ ⊂ F∗p where F∗p has many small subgroups

▸ Then B must check that “ĝ” sent by A is in the correct group

▸ Otherwise, if ĝb is in a small group of order N, a malicious A
can learn b mod N

▸ . . . Then b mod N ′, etc.

One way to easily prevent this: use p = 2q + 1, q a Sophie Germain
prime
⇒ Only a small subgroup of order 2 to check for in F∗p
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What about implementation, though?

▸ We need to compute g x , for a large x (e.g. 256 bits)

▸ Cannot just do g × g × g × . . . × g ≈ 2256 times!

▸ Notice that g × g = g2, g2
× g2

= g4, g4
× g4

= g16, etc.

▸ Also: g × g2
= g3, g2

× g16
= g18, etc.

↝ “Square & multiply” algorithm
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Square & multiply

Square & multiply

Input x , g
Output g x

1 h = 1

2 While x ≠ 0

3 if (x&1)

4 h ← [ h × g
5 g ← [ g × g
6 x ←[ x ≫ 1

7 Return h

⇒ Only log(x) iterations needed!
(Problem here, runtime also depends on wt(x))
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Implementation: what else?

▸ We also need multiplication, addition in G
▸ If G ⊆ F∗p ⇒ modular arithmetic

▸ Require big number multiplication, (integer) division,
remainders, addition

▸ ⇒ split f as e.g. f0 + 264f1 + 2128f2 + . . .

▸ Can use dedicated arithmetic for “efficient” primes
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Implementation digression

Consider p = 2111 − 37, then

▸ 2111 ≡ 37 mod p

▸ a × 2111 ≡ a × 37 mod p

▸ a × 2112 ≡ a × 74 mod p

▸ a × 228 × b × 284 ≡ ab × 74 mod p

▸ a × 256 × b × 256 ≡ ab × 74 mod p

▸ etc.
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Multiplication mod 2111
− 37

Let f = f0 + 228f1 + 256f2 + 284f3, g = g0 + 228g1 + 256g2 + 284g3, set

▸ h0 = f0g0 + 74f1g3 + 74f2g2 + 74f3g1
▸ h1 = f0g1 + f1g0 + 74f2g3 + 74f3g2
▸ h2 = f0g2 + f1g1 + f2g0 + 74f3g3
▸ h3 = f0g3 + f1g2 + f2g1 + f3g0

Then fg mod 2111 − 37 = h0 + 228h1 + 256h2 + 284h3 mod 2111 − 37

To be complete:

▸ Have to reduce the hi ’s mod 228 (227)

▸ Have to ensure that all figj can be computed with, say, a
64 × 64→ 64 multiplier (in fact, desktop CPUs have
64 × 64→ 128 multipliers)

⇒ Modular multiplication w/o explicit division
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What next?

In two weeks:

▸ Inversion in integer rings: extended Euclid algorithm

▸ The Chinese Remainder Theorem (CRT)

▸ How to do asymmetric key exchange, public key signatures
differently: RSA


