Introduction to cryptology (GBIN8U16)

More on discrete-logarithm based schemes

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-03-13

Signatures: what?

Objectives of a signature algorithm:

- Given (sk, pk) a key pair
- message $m+$ secret key sk \leadsto signature $s=\boldsymbol{S}_{\text {sk }}(m)$
- message $m+$ signature $s+$ public key $\mathrm{pk} \leadsto$ verified message $\mathfrak{V}_{\mathrm{pk}}(m, s)$
Informal security objectives
- Given pk, it should be hard to find sk
- Given pk, it should be hard to forge signatures
- (Variant: given access to a signing oracle $\mathfrak{U}_{(\mathrm{sk}, \mathrm{pk})}$, it should be hard to forge signatures)

Related: interactive proof of identity

Objective of a proof of ID scheme:

- Publish public identification data α
- When challenged, prove knowledge of a secret related to α

Example of a one-time scheme:
1 Let \mathcal{H} be a preimage-resistant hash function, \mathcal{R} a large set
2 The prover draws $x \stackrel{\$}{\leftarrow} \mathcal{R}$, computes and publishes $X=\mathcal{H}(x)$
3 When challenged, reveals x
Many-time variant:
1 Draw $x \stackrel{\varsigma}{\leftarrow} \mathcal{R}$, compute and publish $X=\mathcal{H}^{N}(x)$
2 When challenged, reveal $\mathcal{H}^{N-1}(x)$, reset $X=\mathcal{H}^{N-1}(x)$

A discrete-log based PoID scheme

From last week's TD (~Schnorr):
1 Let $\mathbb{G}=\langle g\rangle$ be a group with a hard DLP
2 The prover draws $x \stackrel{\$}{\leftarrow} \mathcal{R}$, computes and publishes $X=g^{x}$
3 When challenged; draws r, sends $R=g^{r}$
4 The verifier picks c and sends it
5 The prover computes $a=r+c x$ and sends it
6 The verifier checks that $R X^{c}=g^{a}$
This can be run many times, BUT r's should be random and never repeat!

From PoID to signature

Differences between PoID and signatures:

- PolDs are interactive (in the verification), signatures are not
- Signatures also involve a message

One major observation:

- If the prover can convince that it doesn't control both R and c, interaction is unnecessary
- (Otherwise, nothing is proved)
\Rightarrow Fiat-Shamir transformation: generate c from R with a hash function

Schnorr signatures

To sign a message m with the key (sk, pk) pair $\left(x, X=g^{x}\right)$
1 Pick $r \stackrel{\S}{\leftarrow} \mathcal{R}$ and compute $R=g^{r}$
2 Compute $c=\mathcal{H}(R, m)$
3. Compute $a=r+c x$ and output (c, a) as the signature of m

To verify a signature:
1 Compute $\hat{R}=g^{a} / X^{c}=g^{a} / g^{c x}$
2 Check that $c=\mathcal{H}(\hat{R}, m)$
Important: r must (again) be random and not repeat! (Why?)

Remember randomness (always)!

int getRandomNumber()
\{
return 4; // chosen by fair dice roll. // guaranteed to be random.
\}

Figure: Not good for Schnorr signatures

Where are we with dlog?

If $\mathbb{G}=\langle g\rangle$ is a prime-order group where the DLP is hard (on average \equiv in the worst case (cf. TD)), then:

- Can do asymmetric key exchange
- Can do public-key signatures

For signatures we also need

- Good hash functions
- Good pseudorandom number generation

Some comments on dlog attacks

When $\mathbb{G} \approx \mathbb{F}_{p}^{*}$, the current dlog records are:

- $|p| \approx 768$ bits (Kleinjung et al., 2017), using a Number Field Sieve (NFS) algorithm
- Took about 5300 core years
- $|p| \approx 1024$ bits for a trapdoored prime (Fried et al., 2017), using a Special NFS (SNFS) algorithm
- Took about 385 core years

Note: it may be hard to decide if a prime is trapdoored
One nice (for an attacker) feature of (S)NFS:

- The largest part of the cost is a precomputation, then computing individual dlogs is very fast

Some more comments on dlog: small subgroup attack

Consider a semi-static key exchange,

- Where one of g^{a} or $g^{b}\left(\right.$ say $\left.g^{b}\right)$ is fixed using $\langle g\rangle \subset \mathbb{F}_{p}^{*}$ where \mathbb{F}_{p}^{*} has many small subgroups
- Then B must check that " \hat{g} " sent by A is in the correct group
- Otherwise, if \hat{g}^{b} is in a small group of order N, a malicious A can learn $b \bmod N$
-...Then $b \bmod N^{\prime}$, etc.
One way to easily prevent this: use $p=2 q+1, q$ a Sophie Germain prime
\Rightarrow Only a small subgroup of order 2 to check for in \mathbb{F}_{p}^{*}

What about implementation, though?

- We need to compute g^{x}, for a large x (e.g. 256 bits)
- Cannot just do $g \times g \times g \times \ldots \times g \approx 2^{256}$ times!
- Notice that $g \times g=g^{2}, g^{2} \times g^{2}=g^{4}, g^{4} \times g^{4}=g^{16}$, etc.
- Also: $g \times g^{2}=g^{3}, g^{2} \times g^{16}=g^{18}$, etc.
\leadsto "Square \& multiply" algorithm

Square \& multiply

Square \& multiply

Input x, g
Output g^{x}
(1) $h=1$

2 While $x \neq 0$
3 if $(x \& 1)$
4

$$
h \leftrightarrow h \times g
$$

$5 \quad g \leftrightarrow g \times g$
6) $x \leftrightarrow x \gg 1$

7 Return h
\Rightarrow Only $\log (x)$ iterations needed!
(Problem here, runtime also depends on $\mathrm{wt}(x)$)

Implementation: what else?

- We also need multiplication, addition in \mathbb{G}
- If $\mathbb{G} \subseteq \mathbb{F}_{p}^{*} \Rightarrow$ modular arithmetic
- Require big number multiplication, (integer) division, remainders, addition
- \Rightarrow split f as e.g. $f_{0}+2^{64} f_{1}+2^{128} f_{2}+\ldots$
- Can use dedicated arithmetic for "efficient" primes

Implementation digression

Consider $p=2^{111}-37$, then

- $2^{111} \equiv 37 \bmod p$
- $a \times 2^{111} \equiv a \times 37 \bmod p$
- $a \times 2^{112} \equiv a \times 74 \bmod p$
- $a \times 2^{28} \times b \times 2^{84} \equiv a b \times 74 \bmod p$
- $a \times 2^{56} \times b \times 2^{56} \equiv a b \times 74 \bmod p$
- etc.

Multiplication $\bmod 2^{111}-37$

$$
\begin{aligned}
\text { Let } & f=f_{0}+2^{28} f_{1}+2^{56} f_{2}+2^{84} f_{3}, g=g_{0}+2^{28} g_{1}+2^{56} g_{2}+2^{84} g_{3}, \text { set } \\
\text { - } & h_{0}=f_{0} g_{0}+74 f_{1} g_{3}+74 f_{2} g_{2}+74 f_{3} g_{1} \\
\text { - } & h_{1}=f_{0} g_{1}+f_{1} g_{0}+74 f_{2} g_{3}+74 f_{3} g_{2} \\
\text { - } & h_{2}=f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0}+74 f_{3} g_{3} \\
\text { - } & h_{3}=f_{0} g_{3}+f_{1} g_{2}+f_{2} g_{1}+f_{3} g_{0}
\end{aligned}
$$

Then $f g \bmod 2^{111}-37=h_{0}+2^{28} h_{1}+2^{56} h_{2}+2^{84} h_{3} \bmod 2^{111}-37$
To be complete:

- Have to reduce the h_{i} 's $\bmod 2^{28}\left(2^{27}\right)$
- Have to ensure that all $f_{i} g_{j}$ can be computed with, say, a $64 \times 64 \rightarrow 64$ multiplier (in fact, desktop CPUs have $64 \times 64 \rightarrow 128$ multipliers)
\Rightarrow Modular multiplication w/o explicit division

What next?

In two weeks:

- Inversion in integer rings: extended Euclid algorithm
- The Chinese Remainder Theorem (CRT)
- How to do asymmetric key exchange, public key signatures differently: RSA

