Introduction to cryptology (GBIN8U16) More on discrete-logarithm based schemes

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-03-13

More on DH, Signatures

Objectives of a signature algorithm:

- Given (sk, pk) a key pair
- ▶ message m + secret key sk → signature s = $\mathfrak{S}_{\mathrm{sk}}(m)$
- message m + signature s + public key $\mathrm{pk} \sim$ verified message $\mathfrak{v}_{\mathrm{pk}}(m,s)$

Informal security objectives

- ${\scriptstyle \mbox{\scriptsize F}}$ Given pk , it should be hard to find sk
- ${\scriptstyle \bullet}$ Given pk, it should be hard to forge signatures
- ${}^{\,\,}$ (Variant: given access to a signing oracle $\mathfrak{G}_{(sk,pk)}$, it should be hard to forge signatures)

Objective of a proof of ID scheme:

- Publish public identification data α
- \blacktriangleright When challenged, prove knowledge of a secret related to α Example of a one-time scheme:
 - \blacksquare Let $\mathcal H$ be a preimage-resistant hash function, $\mathcal R$ a large set
 - **2** The prover draws $x \stackrel{\$}{\leftarrow} \mathcal{R}$, computes and publishes $X = \mathcal{H}(x)$
 - \blacksquare When challenged, reveals x

Many-time variant:

- I Draw $x \stackrel{s}{\leftarrow} \mathcal{R}$, compute and publish $X = \mathcal{H}^N(x)$
- **2** When challenged, reveal $\mathcal{H}^{N-1}(x)$, reset $X = \mathcal{H}^{N-1}(x)$

From last week's TD (~Schnorr):

- **1** Let $\mathbb{G} = \langle g \rangle$ be a group with a hard DLP
- **2** The prover draws $x \stackrel{s}{\leftarrow} \mathcal{R}$, computes and publishes $X = g^x$
- 3 When challenged; draws r, sends $R = g^r$
- 4 The verifier picks c and sends it
- **5** The prover computes a = r + cx and sends it
- 6 The verifier checks that $RX^c = g^a$

This can be run many times, BUT r's should be random and never repeat!

Differences between PoID and signatures:

- PoIDs are interactive (in the verification), signatures are not
- Signatures also involve a message

One major observation:

- If the prover can convince that it doesn't control both R and c, interaction is unnecessary
- (Otherwise, nothing is proved)
- \Rightarrow Fiat-Shamir transformation: generate c from R with a hash function

To sign a message *m* with the key (sk, pk) pair ($x, X = g^x$)

$$\blacksquare \text{ Pick } r \stackrel{\$}{\leftarrow} \mathcal{R} \text{ and compute } R = g^r$$

2 Compute
$$c = \mathcal{H}(R, m)$$

3 Compute a = r + cx and output (c, a) as the signature of m

To verify a signature:

1 Compute
$$\hat{R} = g^a / X^c = g^a / g^{c > c}$$

2 Check that
$$c = \mathcal{H}(\hat{R}, m)$$

Important: r must (again) be random and not repeat! (Why?)

Figure: Not good for Schnorr signatures

If $\mathbb{G} = \langle g \rangle$ is a prime-order group where the DLP is hard (on average \equiv in the worst case (cf. TD)), then:

- Can do asymmetric key exchange
- Can do public-key signatures

For signatures we also need

- Good hash functions
- Good pseudorandom number generation

When $\mathbb{G} \approx \mathbb{F}_p^*$, the current dlog records are:

- ▶ $|p| \approx 768$ bits (Kleinjung et al., 2017), using a Number Field Sieve (NFS) algorithm
 - Took about 5300 core years
- ▶ $|p| \approx 1024$ bits for a *trapdoored* prime (Fried et al., 2017), using a *Special NFS* (SNFS) algorithm
 - Took about 385 core years

Note: it may be hard to decide if a prime is trapdoored

One nice (for an attacker) feature of (S)NFS:

The largest part of the cost is a precomputation, then computing individual dlogs is very fast Consider a semi-static key exchange,

• Where one of g^a or g^b (say g^b) is fixed

using $\langle g \rangle \subset \mathbb{F}_p^*$ where \mathbb{F}_p^* has many small subgroups

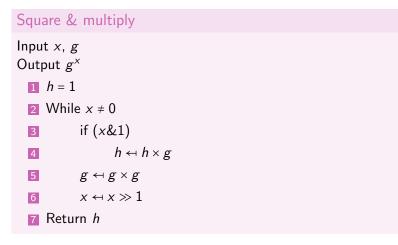
- Then B must check that " \hat{g} " sent by A is in the correct group
- Otherwise, if \hat{g}^b is in a small group of order N, a malicious A can learn $b \mod N$
- ... Then $b \mod N'$, etc.

One way to easily prevent this: use p = 2q + 1, q a Sophie Germain prime

 \Rightarrow Only a small subgroup of order 2 to check for in \mathbb{F}_p^*

- We need to compute g^x , for a large x (e.g. 256 bits)
- Cannot just do $g \times g \times g \times \dots \times g \approx 2^{256}$ times!
- Notice that $g \times g = g^2$, $g^2 \times g^2 = g^4$, $g^4 \times g^4 = g^{16}$, etc.
- Also: $g \times g^2 = g^3$, $g^2 \times g^{16} = g^{18}$, etc.
- → "Square & multiply" algorithm

Square & multiply



 \Rightarrow Only log(x) iterations needed! (Problem here, runtime also depends on wt(x))

- ${\scriptstyle \blacktriangleright}$ We also need multiplication, addition in ${\mathbb G}$
- If $\mathbb{G} \subseteq \mathbb{F}_p^* \Rightarrow$ modular arithmetic
- Require big number multiplication, (integer) division, remainders, addition
- ▶ ⇒ split *f* as e.g. $f_0 + 2^{64}f_1 + 2^{128}f_2 + \dots$
- · Can use dedicated arithmetic for "efficient" primes

Consider
$$p = 2^{111} - 37$$
, then
 $2^{111} \equiv 37 \mod p$
 $a \times 2^{111} \equiv a \times 37 \mod p$
 $a \times 2^{112} \equiv a \times 74 \mod p$
 $a \times 2^{28} \times b \times 2^{84} \equiv ab \times 74 \mod p$
 $a \times 2^{56} \times b \times 2^{56} \equiv ab \times 74 \mod p$

Multiplication mod $2^{111} - 37$

Let $f = f_0 + 2^{28} f_1 + 2^{56} f_2 + 2^{84} f_3$, $g = g_0 + 2^{28} g_1 + 2^{56} g_2 + 2^{84} g_3$, set $h_0 = f_0 g_0 + 74 f_1 g_3 + 74 f_2 g_2 + 74 f_3 g_1$ $h_1 = f_0 g_1 + f_1 g_0 + 74 f_2 g_3 + 74 f_3 g_2$ $h_2 = f_0 g_2 + f_1 g_1 + f_2 g_0 + 74 f_3 g_3$ $h_3 = f_0 g_3 + f_1 g_2 + f_2 g_1 + f_3 g_0$

Then $fg \mod 2^{111} - 37 = h_0 + 2^{28}h_1 + 2^{56}h_2 + 2^{84}h_3 \mod 2^{111} - 37$

To be complete:

- Have to reduce the h_i 's mod 2^{28} (2^{27})
- ▶ Have to ensure that all $f_i g_j$ can be computed with, say, a $64 \times 64 \rightarrow 64$ multiplier (in fact, desktop CPUs have $64 \times 64 \rightarrow 128$ multipliers)
- \Rightarrow Modular multiplication w/o explicit division

What next?

In two weeks:

- Inversion in integer rings: extended Euclid algorithm
- The Chinese Remainder Theorem (CRT)
- How to do asymmetric key exchange, public key signatures differently: RSA