
Symmetric recap, Asymmetric start 2018–02–28 1/24

Introduction to cryptology (GBIN8U16)
]

Symmetric recap, Asymmetric start

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018–02–28

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html


Symmetric recap, Asymmetric start 2018–02–28 2/24

Important information

▸ No lecture next week and in three weeks

▸ Two lectures in two and four weeks

▸ Contrôle continu lab session in two and three weeks



Symmetric recap, Asymmetric start 2018–02–28 3/24

We always need secret codes



Symmetric recap, Asymmetric start 2018–02–28 4/24

Part of the solution: symmetric crypto

Goal: given a shared secret k , establish a secure channel

▸ Provides confidentiality of communications

▸ Authenticity

▸ Integrity

against active adversaries not knowing k



Symmetric recap, Asymmetric start 2018–02–28 5/24

A main security property for confidentiality: IND-CPA

1 Submit messages to an oracle O to be encrypted, & get the
result

2 Choose, m0, m1, send both to O

3 Receive O(mb) for a random b ∈ {0,1}

4 Goal: determine the value of b (better than by guessing)

(Erratum: m0 and m1 have to be of equal length)



Symmetric recap, Asymmetric start 2018–02–28 6/24

How to achieve IND-CPA

A “good” O: a block cipher w/ a randomized mode of operation.
But:

▸ “Only” computational security ⇒ can always find the key,
spending enough time

▸ Cannot encrypt too many (or too long) messages without
changing the key

Examples of modes: CTR, CBC



Symmetric recap, Asymmetric start 2018–02–28 7/24

How to achieve authenticity+integrity

Use a MAC (by definition). But again:

▸ “Only” computational security ⇒ can always find the key,
spending enough time

▸ Cannot authenticate too many (or too long) messages
without changing the key

▸ May or may not be randomized



Symmetric recap, Asymmetric start 2018–02–28 8/24

A good type of MAC

Polynomial MACs:

▸ Messages are polynomials (over a finite field)

▸ Evaluate a message on a secret point

▸ Encrypt the result (e.g. with a block cipher) to break linearity

(Erratum: n-block messages need to be mapped to degree-n
polynomials, w/o a constant term)



Symmetric recap, Asymmetric start 2018–02–28 9/24

MAC + Encryption

Authenticated encryption AE: jointly provide confidentiality and
auth/integrity. One way: combine a MAC M and an encryption
scheme Enc:

▸ AE(m) = Enc(m)∣∣M(m) → bad (as in “not always good”)

▸ AE(m) = x ∶= Enc(m)∣∣M(x) → good

▸ AE(m) = Enc(m∣∣M(m)) → also good

AE: the most efficient way to communicate securely.

⇒ But we need a shared key!



Symmetric recap, Asymmetric start 2018–02–28 10/24

How to get a key

Some possibilities

▸ Meet in person (impractical)

▸ Use secure message transmission (not so practical (but very
nice!))

▸ Use asymmetric “public-key” schemes (quite practical)



Symmetric recap, Asymmetric start 2018–02–28 11/24

Public-key algorithms

Some major examples:

▸ Asymmetric encryption (one key to encrypt, another to
decrypt), e.g. RSA (+ some randomized padding)

▸ Digital signature (one key to sign, another to verify), e.g. DSA

▸ Public-key key exchange, e.g. Diffie-Hellman

Note: RSA can be used to implement both a key-exchange and a
signature



Symmetric recap, Asymmetric start 2018–02–28 12/24

Today’s focus: Diffie-Hellman

A simple protocol:
▸ Let G = ⟨g⟩ be a cyclic finite group with a generator g

▸ Example: (Z/512Z,+), g = 1, ord(g) = 512
▸ Example: F∗257, g = 3, ord(g) = 256
▸ Example: (F2[X ]/X 8

+X 4
+X 3

+X 2
+ 1)∗, g = X ,

ord(g) = 255

▸ A picks a
$
←Ð {0, . . . ,ord(g) − 1}, sends ga to B

▸ B picks b
$
←Ð {0, . . . ,ord(g) − 1}, sends gb to A

▸ A computes (gb
)
a
= gba

= gab, sets k = KDF(gab
)

▸ B computes (ga
)
b
= gab, sets k = KDF(gab

)

With KDF some key derivation function (e.g. a ∼ hash function)



Symmetric recap, Asymmetric start 2018–02–28 13/24

Why this works?

Functionality

▸ A and B only need public information to perform the exchange

▸ They get the same k

⇒ Public-key key exchange

Security: necessary conditions

▸ Given g , ga, gb, it must be hard to compute gab

▸ k = KDF(gab
) must be “random-looking” when a, b are

random

▸ There must be many possible values for k



Symmetric recap, Asymmetric start 2018–02–28 14/24

Security focus

A necessary condition: computing discrete logarithms in G must
be “hard”

Discrete logarithm

Let G = ⟨g⟩ be a finite group of order N, the discrete logarithm of
h = ga, a ∈ {0, . . . ,N − 1} is equal to a

How hard is the “discrete logarithm problem” (DLP) for various
groups?



Symmetric recap, Asymmetric start 2018–02–28 15/24

DLP hardness

Proposition

It is always possible to compute the discrete logarithm in a group
of order N in time O(

√

N)

So one must at least pick N s.t. 2log(N)/2 is large. But:

▸ (Z/nZ,+): DLP always easy (logarithm ≡ division)

▸ F∗q: usually hard, not maximally hard (needs much less than
√

N)

▸ E(Fq): usually maximally hard (needs about
√

N)



Symmetric recap, Asymmetric start 2018–02–28 16/24

A simple generic algorithm

Idea: use collisions to reveal the solution. One way to do this:
baby-step/giant-step

▸ Let G be of order N, h = ga for some a ∈ {0, . . . ,N − 1}

▸ Let r = ⌈

√

N⌉, then a = ra1 + a0, with a0, a1 less than r

▸ We have h = g ra1+a0 , so h/ga0
= g ra1

⇒

1 Compute L0 = [hg−x , x < r], L1 = [g ry , y < r]

2 Find i , j s.t. L0[i] = L1[j]

3 Return a = rj + i



Symmetric recap, Asymmetric start 2018–02–28 17/24

Baby-step/giant-step: Comments

▸ The baby-step/giant-step algorithm works with any group

▸ It has time and memory complexity equal to
√

ord(G) ⇒

generically optimal!

▸ Other collision-based algorithms exist with constant memory
complexity

▸ Depending on G, better algorithms may be available (we’ve
seen some examples)



Symmetric recap, Asymmetric start 2018–02–28 18/24

More on how to pick a group

If the order N of G is not prime, G has subgroups

▸ Let N = pN ′, then gp generates a group of order N ′

Proposition (Pohlig-Hellman)

It is possible to solve the DLP in G subgroup-by-subgroup

⇒ For the DLP to be hard, G must be of order N s.t. DLP is hard
in a subgroup of order p, the largest prime factor of N (But no
details for now)



Symmetric recap, Asymmetric start 2018–02–28 19/24

Are we done? Not quite

▸ Hardness of the DLP cannot be “proven”, but a reasonable
assumption for some groups

▸ We also need g x to be random-looking (ditto)

But regardless, Diffie-Hellman as presented only protects againts
passive adversaries

⇒ Not very useful in practice



Symmetric recap, Asymmetric start 2018–02–28 20/24

Diffie-Hellman with a man in the middle

▸ A sends ga to B
▸ C intercepts the message, sends g c to B

▸ B sends gb to A
▸ C intercepts the message, sends g c to A

▸ A and C share a key ka = KDF(gac
)

▸ B and C share a key kb = KDF(gbc
)

▸ Anytime A sends a message to B with key ka, C decrypts and
re-encrypts with kb (and vice-versa)



Symmetric recap, Asymmetric start 2018–02–28 21/24

One way to solve this: signatures

A wants to be sure it is talking to B

▸ Find B’s public verification key for a signature algorithm

▸ Ask B to sign gb

▸ Only accept it if the signature is valid

Works well, but A needs to know B’s public key beforehand

⇒ We again have a bootstrapping issue

So are we back to square one?



Symmetric recap, Asymmetric start 2018–02–28 22/24

Public-key infrastructures can help

Public keys still help compared to private ones:

▸ Possibly long term (v. have to be changed after a while
(although not a real limitation))

▸ Scales linearly w/ the number of participants (v.
quadratically)

▸ Trusting only one key is enough, if it signs all the ones you
need



Symmetric recap, Asymmetric start 2018–02–28 23/24

Example: TLS certificates

The simple picture:

▸ Web browsers are pre-loaded with “certificates” (∼ public
keys) of certification authorities (CAs)

▸ CAs sign the certificates of websites using secure connections
(possibly using intermediaries)

▸ When connecting to a website, check the entire chain of
certificates

▸ If everything’s fine, use the website’s public key to
authenticate the exchange



Symmetric recap, Asymmetric start 2018–02–28 24/24

So how do we sign?

Signature possibilities

▸ Use a discrete logarithm based protocol

▸ Or RSA

▸ But in both cases, also need a hash function!

⇒ Details in two weeks!


