Introduction to cryptology (GBIN8U16) ↔ Symmetric recap, Asymmetric start

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-02-28

Symmetric recap, Asymmetric start

^{2018–02–28} 1/24

- No lecture next week and in three weeks
- Two lectures in two and four weeks
- Contrôle continu lab session in two and three weeks

We always need secret codes

Goal: given a shared secret k, establish a secure channel

- Provides confidentiality of communications
- Authenticity
- Integrity

against active adversaries not knowing \boldsymbol{k}

- \blacksquare Submit messages to an $\mathit{oracle}\ \mathfrak{O}$ to be encrypted, & get the result
- 2 Choose, m_0 , m_1 , send both to \mathfrak{O}
- **3** Receive $\mathfrak{O}(m_b)$ for a random $b \in \{0, 1\}$
- **4** Goal: determine the value of b (better than by guessing)

(Erratum: m_0 and m_1 have to be of equal length)

A "good" ${\boldsymbol {\mathfrak O}}$: a block cipher w/ a randomized mode of operation. But:

- "Only" computational security ⇒ can always find the key, spending enough time
- Cannot encrypt too many (or too long) messages without changing the key

Examples of modes: CTR, CBC

Use a MAC (by definition). But again:

- "Only" computational security ⇒ can always find the key, spending enough time
- Cannot authenticate too many (or too long) messages without changing the key
- May or may not be randomized

Polynomial MACs:

- Messages are polynomials (over a finite field)
- Evaluate a message on a secret point
- Encrypt the result (e.g. with a block cipher) to break linearity (Erratum: *n*-block messages need to be mapped to degree-*n* polynomials, w/o a constant term)

Authenticated encryption AE: jointly provide confidentiality and auth/integrity. One way: combine a MAC ${\cal M}$ and an encryption scheme Enc:

- ▶ $AE(m) = Enc(m) || \mathcal{M}(m) \rightarrow bad$ (as in "not always good")
- ► $AE(m) = x := Enc(m) || \mathcal{M}(x) \rightarrow good$
- ▶ $AE(m) = Enc(m || M(m)) \rightarrow also good$

AE: the most efficient way to communicate securely.

 \Rightarrow But we need a shared key!

Some possibilities

- Meet in person (impractical)
- Use secure message transmission (not so practical (but very nice!))
- Use asymmetric "public-key" schemes (quite practical)

Some major examples:

- Asymmetric encryption (one key to encrypt, another to decrypt), e.g. RSA (+ some randomized padding)
- Digital signature (one key to sign, another to verify), e.g. DSA
- Public-key key exchange, e.g. Diffie-Hellman

Note: RSA can be used to implement both a key-exchange and a signature

A simple protocol:

- Let $\mathbb{G} = \langle g \rangle$ be a cyclic finite group with a generator g
 - ▶ Example: $(\mathbb{Z}/512\mathbb{Z}, +)$, g = 1, ord(g) = 512
 - Example: \mathbb{F}_{257}^* , g = 3, $\operatorname{ord}(g) = 256$
 - Example: $(\mathbb{F}_2[X]/X^8 + X^4 + X^3 + X^2 + 1)^*$, g = X, ord(g) = 255
- A picks $a \stackrel{s}{\leftarrow} \{0, \dots, \operatorname{ord}(g) 1\}$, sends g^a to B
- ▶ *B* picks $b \stackrel{\$}{\leftarrow} \{0, \dots, \operatorname{ord}(g) 1\}$, sends g^b to *A*
- A computes $(g^b)^a = g^{ba} = g^{ab}$, sets $k = KDF(g^{ab})$
- B computes $(g^a)^b = g^{ab}$, sets $k = KDF(g^{ab})$

With KDF some key derivation function (e.g. a ~ hash function)

Why this works?

Functionality

- A and B only need public information to perform the exchange
- They get the same k
- \Rightarrow Public-key key exchange

Security: necessary conditions

- Given g, g^a , g^b , it must be hard to compute g^{ab}
- ▶ k = KDF(g^{ab}) must be "random-looking" when a, b are random
- There must be many possible values for k

Security focus

A necessary condition: computing discrete logarithms in $\mathbb G$ must be "hard"

Discrete logarithm

Let $\mathbb{G} = \langle g \rangle$ be a finite group of order N, the *discrete logarithm* of $h = g^a$, $a \in \{0, ..., N - 1\}$ is equal to a

How hard is the "discrete logarithm problem" (DLP) for various groups?

DLP hardness

Proposition

It is always possible to compute the discrete logarithm in a group of order N in time $O(\sqrt{N})$

So one must *at least* pick N s.t. $2^{\log(N)/2}$ is large. But:

- $(\mathbb{Z}/n\mathbb{Z}, +)$: DLP always easy (logarithm = division)
- \mathbb{F}_q^* : usually hard, not *maximally* hard (needs much less than \sqrt{N})
- $E(\mathbb{F}_q)$: usually maximally hard (needs about \sqrt{N})

Idea: use collisions to reveal the solution. One way to do this: baby-step/giant-step

- Let \mathbb{G} be of order N, $h = g^a$ for some $a \in \{0, \dots, N-1\}$
- Let $r = \lfloor \sqrt{N} \rfloor$, then $a = ra_1 + a_0$, with a_0 , a_1 less than r

• We have
$$h = g^{ra_1 + a_0}$$
, so $h/g^{a_0} = g^{ra_1}$

 \Rightarrow

- The baby-step/giant-step algorithm works with any group
- ▶ It has time and memory complexity equal to $\sqrt{\text{ord}(\mathbb{G})} \Rightarrow$ generically optimal!
- Other collision-based algorithms exist with constant memory complexity
- Depending on G, better algorithms may be available (we've seen some examples)

If the order N of \mathbb{G} is not prime, \mathbb{G} has *subgroups*

• Let N = pN', then g^p generates a group of order N'

Proposition (Pohlig-Hellman)

It is possible to solve the DLP in ${\mathbb G}$ subgroup-by-subgroup

 \Rightarrow For the DLP to be hard, \mathbb{G} must be of order N s.t. DLP is hard in a subgroup of order p, the largest prime factor of N (But no details for now)

- Hardness of the DLP cannot be "proven", but a reasonable assumption for some groups
- We also need g^{x} to be random-looking (ditto)

But regardless, Diffie-Hellman as presented only protects againts *passive* adversaries

 \Rightarrow Not very useful in practice

Diffie-Hellman with a man in the middle

- A sends g^a to B
 - C intercepts the message, sends g^c to B
- B sends g^b to A
 - C intercepts the message, sends g^c to A
- A and C share a key $k_a = KDF(g^{ac})$
- *B* and *C* share a key $k_b = KDF(g^{bc})$
- Anytime A sends a message to B with key k_a, C decrypts and re-encrypts with k_b (and vice-versa)

A wants to be sure it is talking to B

- Find B's public verification key for a signature algorithm
- Ask B to sign g^b
- Only accept it if the signature is valid

Works well, but A needs to know B's public key beforehand

 \Rightarrow We again have a bootstrapping issue

So are we back to square one?

Public keys still help compared to private ones:

- Possibly long term (v. have to be changed after a while (although not a real limitation))
- Scales linearly w/ the number of participants (v. quadratically)
- Trusting only one key is enough, if it signs all the ones you need

The simple picture:

- Web browsers are pre-loaded with "certificates" (~ public keys) of certification authorities (CAs)
- CAs sign the certificates of websites using secure connections (possibly using intermediaries)
- When connecting to a website, check the entire chain of certificates
- If everything's fine, use the website's public key to authenticate the exchange

Signature possibilities

- Use a discrete logarithm based protocol
- Or RSA
- But in both cases, also need a hash function!
- \Rightarrow Details in two weeks!