
Extension fields, HF 2018–02–14 1/30

Introduction to cryptology (GBIN8U16)
]

Extension fields, Hash functions

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018–02–14

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html


Extension fields, HF 2018–02–14 2/30

Finite fields: prime fields recap

▸ Motivation: a rich field structure over a finite set
▸ Idea: take the integers and reduce modulo N

▸ Operations work “as usual”
▸ Over a finite set

▸ Problem: have to ensure invertibility of all elements
▸ Necessary condition N has to be prime
▸ (Otherwise, N = pq⇒ p×q = 0 mod N ⇒ neither is invertible)
▸ In fact also sufficient: Fp = Z/pZ is a field for p prime



Extension fields, HF 2018–02–14 3/30

Fields ⇒ polynomials

▸ One can define the polynomials Fp[X ] over a finite field

▸ One can divide polynomials (e.g. (X 2 +X )/(X + 1) = X )

▸ ⇒ notion of remainder (e.g. (X 2 +X + 1)/(X + 1) = (X ,1)
▸ ⇒ can define multiplication in Fp[X ] modulo a polynomial Q

▸ If deg(Q) = n, operands are restricted to a finite set of poly. of
deg < n



Extension fields, HF 2018–02–14 4/30

Finite fields with polynomials

▸ Fp[X ]/Q is a finite set of polynomials

▸ With addition, multiplication working as usual (again)
▸ To make it a field: have to ensure invertibility of all elements

▸ Necessary condition: Q is irreducible, i.e. has no non-constant
factors (Q is “prime”)

▸ In fact also sufficient: Fp[X ]/Q is a field for Q irreducible over
Fp

▸ Claim: irreducible polynomials of all degrees exist over any
given finite field



Extension fields, HF 2018–02–14 5/30

Quick questions

▸ How many elements does have a field built as Fp[X ]/Q, when
deg(Q) = n?

▸ Describe the cardinality of finite fields that you know how to
build

▸ Let α ∈ Fq = Fp[X ]/Q. what is the result of α + α + . . . + α
(p − 1 additions)?



Extension fields, HF 2018–02–14 6/30

Quick remarks

▸ Two finite fields of equal cardinality are unique up to
isomorphism

▸ But different choices for Q may be possible ⇒ different
representations

▸ One can build extension towers: extensions over fields that
were already extension fields, iterating the same process as for
a single extension



Extension fields, HF 2018–02–14 7/30

How to implement finite field operations?

▸ Fp:
▸ Addition: add modulo
▸ Multiplication: multiply modulo
▸ Inverse: use the extended Euclid algorithm or Little Fermat

Theorem (see that another day)

▸ Fpd :
▸ Addition: add modulo, coefficient-wise
▸ Multiplication: multiply polynomials modulo (w.r.t. polynomial

division) ⇒ Use LFSRs
▸ Inverse: use the extended Euclid algorithm or Lagrange

Theorem (probably won’t see that)



Extension fields, HF 2018–02–14 8/30

Multiplication in F2n

▸ α ∈ F2n is “a polynomial of deg < n”

▸ So α = αn−1X n−1 + . . . + α1X + α0

▸ So we can multiply α by X ⇒ αn−1X n + . . . + α1X
2 + α0X

▸ But this may be of deg = n, so not in F2n

▸ So we reduce the result
mod Q = qnX

n + qn−1X n−1 + . . . + q1X + q0, the defining
polynomial of F2n = F2[X ]/Q



Extension fields, HF 2018–02–14 9/30

Reduction: two cases

Case 1: deg(αX ) < n

▸ There’s nothing to do

Case 2: deg(αX ) = n

▸ Then deg(αX −Q) < n

▸ And αX −Q is precisely the remainder of αX ÷Q

▸ (Think how 2N > a > N mod N = a −N)



Extension fields, HF 2018–02–14 10/30

Multiplication + reduction: alternative view

(αn−1, . . . , α1, α0) ×X mod (Qn,Qn−1, . . . ,Q1,Q0) =
▸ (αn−2, . . . , α1, α0,0) if αn−1 = 0

▸ (αn−2 −Qn−1, . . . , α1 −Q2, α0 −Q1,−Q0) if αn−1 = 1

▸ (or (αn−2 +Qn−1, . . . , α1 +Q2, α0 +Q1,Q0) as we’re in
characteristic two)

▸ or (αn−2 +Qn−1αn−1, . . . , α1 +Q2αn−1, α0 +Q1αn−1,Q0αn−1)
⇒ the result of one step of LFSR with feedback polynomial
equal to (−)Q!



Extension fields, HF 2018–02–14 11/30

Summary

▸ An element of Fn
2 = F2[X ]/Q is a polynomial

▸ ...is a state of an LFSR with feedback polynomial Q

▸ Multiplication by X is done mod Q

▸ ...is the result of clocking the LFSR once

▸ Multiplication by X 2 is done by clocking the LFSR twice, etc.

▸ Multiplication by βn−1X n−1 + . . . + β1X + β0 is done “the
obvious way”



Extension fields, HF 2018–02–14 12/30

A note on representation

It is convenient to write α = αn−1X n−1 + . . . + α1X + α0 as the
integer a = αn−12n−1 + . . . + α12 + α0

▸ Example: X 4 +X 3 +X + 1 ”=” 27 = 0x1B



Extension fields, HF 2018–02–14 13/30

Examples in F28 ≡ F2[X ]/X 8
+X 4

+X 3
+X + 1

Example 1:

▸ α = X 5 +X 3 +X (0x2A), β = X 2 + 1 (0x05)

▸ α + β = X 5 +X 3 +X 2 +X + 1 (0x2F)

▸ αβ = X 2α + α = X 7 +X 5 +X 3 (0xA8) + X 5 +X 3 +X =
X 7 +X (0x82)



Extension fields, HF 2018–02–14 14/30

Examples in F28 ≡ F2[X ]/X 8
+X 4

+X 3
+X + 1

Example 2:

▸ α = X 5 +X 3 +X , γ = X 4 +X (0x12)

▸ αγ = X 4α +Xα
▸ X 4α = X (X (X 7 +X 5 +X 3))
▸ X (X 7 +X 5 +X 3) = (X 8 +X 6 +X 4) + (X 8 +X 4 +X 3 +X + 1) =
X 6 +X 3 +X + 1

▸ X (X 6 +X 3 +X + 1) = X 7 +X 4 +X 2 +X

▸ = X 7 +X 4 +X 2 +X (0x96) + X 6 +X 4 +X 2 (0x54) =
X 7 +X 6 +X (0xB2)



Extension fields, HF 2018–02–14 15/30

Why do we care again?

Extension fields (esp. over F2) are useful to:

▸ Build polynomial MACs
▸ Define matrices “over bytes” or nibbles (4-bit values)

▸ Used e.g. in the AES

▸ Etc.

They’re generally useful when working over binary data



Extension fields, HF 2018–02–14 16/30

And now for something completely different



Extension fields, HF 2018–02–14 17/30

Cryptographic hash functions

Hash function

A hash function is a mapping H ∶M→ D

So it really is just a function...

Usually:

▸ M = ⋃`<N{0,1}`, D = {0,1}n, N ≫ n

▸ N is typically ≥ 264, n ∈ {////128, ////160, 224, 256, 384, 512}
Also popular now: extendable-output functions (XOFs): D = ⋃`<N′{0,1}`

▸ Hash functions are keyless

▸ So, how do you tell if one’s good?



Extension fields, HF 2018–02–14 18/30

Three classical security properties

1 First preimage: given t, find m s.t. H(m) = t

2 Second preimage: given m, find m′ ≠ m s.t. H(m) =H(m′)
3 Collision: find (m,m′ ≠ m) s.t. H(m) =H(m′)

Generic complexity:
1), 2): Θ(2n);
3): Θ(2n/2) ¢ “Birthday paradox”

(There’s actually more...)



Extension fields, HF 2018–02–14 19/30

Why do we care? Applications!

Hash functions are useful for:

▸ Hash-and-sign (RSA signatures, (EC)DSA, ...)

▸ building MACs (HMAC, ...)

▸ Password hashing (with a grain of salt)

▸ Hash-based signatures (inefficient but PQ)

▸ In padding schemes (OAEP, ...)

▸ Etc.

⇒ A versatile building block, but only a building block



Extension fields, HF 2018–02–14 20/30

So, how do you build hash functions?

▸ Objective #1: be secure
▸ Objective #2: be efficient

▸ Even more than block ciphers!
▸ ⇒ work with limited amount of memory

So...

▸ (#2) Build H from a small component

▸ (#1) Prove that this is okay

⇒ Kind of like a mode of operation!



Extension fields, HF 2018–02–14 21/30

What kind of small component?

Compression function

A compression function is a mapping f ∶ {0,1}n × {0,1}b → {0,1}n

▸ A family of functions from n to n bits

▸ Not unlike a block cipher, only not invertible

Permutation

A permutation is an invertible mapping p ∶ {0,1}n → {0,1}n

Yes, very simple

▸ Like a block cipher with a fixed key, e.g. p = E(0, ⋅)



Extension fields, HF 2018–02–14 22/30

From small to big (compression function case)

Assume a good f

▸ Main problem: fixed-size domain {0,1}n × {0,1}b
▸ Objective: domain extension to ⋃`<N{0,1}`

The classical answer: the Merkle-Damg̊ard construction (1989)



Extension fields, HF 2018–02–14 23/30

MD: with a picture

pad(m) = m1 m2 m3 m4

fh0 = IV f
h1

f
h2

f
h3

h4 =H(m)

That is: H(m1∣∣m2∣∣m3∣∣ . . .) = f(. . . f(f(f(IV,m1),m2),m3), . . .)
pad(m) ≈ m∣∣1000 . . .00⟨length of m⟩



Extension fields, HF 2018–02–14 24/30

MD: does it work?

Efficiency?

▸ Only sequential calls to f

▸ ⇒ fine

Security?

▸ Still to be shown
▸ Objective: reduce security of H to that of f

▸ “If f is good, then H is good”

▸ True for collision and first preimage, false for second preimage

▸ Won’t see the details, though (in the end, everything is quite
fine)



Extension fields, HF 2018–02–14 25/30

So how to do f?

1 Start like a block cipher

2 Add feedforward to prevent invertibility

Examples:
“Davies-Meyer”: f(h,m) = Em(h) ⊞ h
“Matyas-Meyer-Oseas”: f(h,m) = Eh(m) ⊞m

▸ Systematic analysis by Preneel, Govaerts and Vandewalle
(1993). “PGV” constructions

▸ Then rigorous proofs (in the ideal cipher model) (Black et al.,
2002), (Black et al., 2010)



Extension fields, HF 2018–02–14 26/30

Re: Davies-Meyer

Picture:

Ehi−1 hi

mi

Used in MD4/5 SHA-0/1/2, etc.



Extension fields, HF 2018–02–14 27/30

Re: Re: Davies-Meyer

Why is the “message” the “key”?

▸ Disconnect chaining value and message length!

▸ E ’s block length: fixed by security level

▸ E ’s key length: fixed by “message” length

▸ Large “key” ⇒ more efficient

▸ Example: MD5’s “block cipher”: 128-bit blocks, 512-bit keys

DM incentive: use very simple message expansion (“key
schedules”)

▸ To be efficient!

▸ Warning: can be a source of weakness



Extension fields, HF 2018–02–14 28/30

Major PGV Warning

PGV constructions are proved secure in the ideal cipher model,
BUT

▸ Real ciphers are not ideal!
▸ Real ciphers don’t have to be ideal to be okay ciphers

▸ IDEA (Lai and Massey, 1991): weak key classes (Daemen et
al., 1993)

▸ TEA (Wheeler and Needham, 1994): equivalent keys (Kelsey
et al., 1996)

▸ But using them in DM mode is a very bad idea (Steil, 2005),
(Wei et al., 2012)!



Extension fields, HF 2018–02–14 29/30

Symmetric summary

We have seen:

▸ Block ciphers

▸ Mode of operations

▸ MACs

▸ Hash functions

▸ Some security properties

All involve similar/distinct techniques

Holidays light personal work:

▸ Can you define the above objects?

▸ Do you know how to build some (roughly)?

▸ Define a good mode of operation (for confidentiality)

▸ ... and a bad one



Extension fields, HF 2018–02–14 30/30

What comes next?

After the holidays:

▸ Some recap

▸ The beginning of public key primitives


