Introduction to cryptology (GBIN8U16) ↔ Extension fields, Hash functions

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-02-14

Extension fields, HF

^{2018–02–14} **1/30**

- Motivation: a rich field structure over a finite set
- Idea: take the integers and reduce modulo N
 - Operations work "as usual"
 - Over a finite set
- Problem: have to ensure invertibility of all elements
 - Necessary condition N has to be prime
 - (Otherwise, $N = pq \Rightarrow p \times q = 0 \mod N \Rightarrow$ neither is invertible)
 - ▶ In fact also sufficient: $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is a field for p prime

- One can define the polynomials $\mathbb{F}_p[X]$ over a finite field
- One can divide polynomials (e.g. $(X^2 + X)/(X + 1) = X$)
- ▶ ⇒ notion of remainder (e.g. $(X^2 + X + 1)/(X + 1) = (X, 1)$
- ▶ ⇒ can define multiplication in $\mathbb{F}_p[X]$ modulo a polynomial Q
 - If deg(Q) = n, operands are restricted to a finite set of poly. of deg < n

- $\mathbb{F}_p[X]/Q$ is a finite set of polynomials
- With addition, multiplication working as usual (again)
- To make it a field: have to ensure invertibility of all elements
 - Necessary condition: Q is *irreducible*, i.e. has no non-constant factors (Q is "prime")
 - In fact also sufficient: $\mathbb{F}_p[X]/Q$ is a field for Q irreducible over \mathbb{F}_p
 - Claim: irreducible polynomials of all degrees exist over any given finite field

- How many elements does have a field built as 𝔽_p[X]/Q, when deg(Q) = n?
- Describe the cardinality of finite fields that you know how to build
- Let $\alpha \in \mathbb{F}_q = \mathbb{F}_p[X]/Q$. what is the result of $\alpha + \alpha + \ldots + \alpha$ (*p* - 1 additions)?

- Two finite fields of equal cardinality are unique up to isomorphism
- But different choices for Q may be possible \Rightarrow different *representations*
- One can build extension towers: extensions over fields that were already extension fields, iterating the same process as for a single extension

How to implement finite field operations?

► **F**_p:

- Addition: add modulo
- Multiplication: multiply modulo
- Inverse: use the extended Euclid algorithm or Little Fermat Theorem (see that another day)
- ► **F**_{p^d}:
 - Addition: add modulo, coefficient-wise
 - Multiplication: multiply polynomials modulo (w.r.t. polynomial division) ⇒ Use LFSRs
 - Inverse: use the extended Euclid algorithm or Lagrange Theorem (probably won't see that)

- $\alpha \in \mathbb{F}_{2^n}$ is "a polynomial of deg < n"
- So $\alpha = \alpha_{n-1}X^{n-1} + \ldots + \alpha_1X + \alpha_0$
- So we can multiply α by $X \Rightarrow \alpha_{n-1}X^n + \ldots + \alpha_1X^2 + \alpha_0X$
- But this may be of deg = n, so not in \mathbb{F}_{2^n}
- So we reduce the result mod $Q = q_n X^n + q_{n-1} X^{n-1} + \ldots + q_1 X + q_0$, the defining polynomial of $\mathbb{F}_{2^n} = \mathbb{F}_2[X]/Q$

Case 1: deg(αX) < n

- There's nothing to do
- Case 2: deg(αX) = n
 - Then deg $(\alpha X Q) < n$
 - And $\alpha X Q$ is precisely the remainder of $\alpha X \div Q$
 - (Think how $2N > a > N \mod N = a N$)

$$(\alpha_{n-1},\ldots,\alpha_1,\alpha_0) \times X \mod (Q_n,Q_{n-1},\ldots,Q_1,Q_0) =$$

• $(\alpha_{n-2},\ldots,\alpha_1,\alpha_0,0)$ if $\alpha_{n-1}=0$

•
$$(\alpha_{n-2} - Q_{n-1}, \dots, \alpha_1 - Q_2, \alpha_0 - Q_1, -Q_0)$$
 if $\alpha_{n-1} = 1$

- (or $(\alpha_{n-2} + Q_{n-1}, \dots, \alpha_1 + Q_2, \alpha_0 + Q_1, Q_0)$ as we're in characteristic two)
- or $(\alpha_{n-2} + Q_{n-1}\alpha_{n-1}, \dots, \alpha_1 + Q_2\alpha_{n-1}, \alpha_0 + Q_1\alpha_{n-1}, Q_0\alpha_{n-1})$ \Rightarrow the result of one step of LFSR with feedback polynomial equal to (-)Q!

- An element of $\mathbb{F}_2^n = \mathbb{F}_2[X]/Q$ is a polynomial
- ... is a state of an LFSR with feedback polynomial Q
- Multiplication by X is done mod Q
- …is the result of clocking the LFSR once
- Multiplication by X^2 is done by clocking the LFSR twice, etc.
- ▶ Multiplication by $\beta_{n-1}X^{n-1} + \ldots + \beta_1X + \beta_0$ is done "the obvious way"

It is convenient to write $\alpha = \alpha_{n-1}X^{n-1} + \ldots + \alpha_1X + \alpha_0$ as the integer $a = \alpha_{n-1}2^{n-1} + \ldots + \alpha_12 + \alpha_0$

• Example: $X^4 + X^3 + X + 1$ "=" 27 = 0x1B

Example 1:

Example 2: • $\alpha = X^5 + X^3 + X$, $\gamma = X^4 + X$ (0x12) • $\alpha \gamma = X^4 \alpha + X \alpha$ • $X^4 \alpha = X(X(X^7 + X^5 + X^3))$ • $X(X^7 + X^5 + X^3) = (X^8 + X^6 + X^4) + (X^8 + X^4 + X^3 + X + 1) = X^6 + X^3 + X + 1$ • $X(X^6 + X^3 + X + 1) = X^7 + X^4 + X^2 + X$ • $= X^7 + X^4 + X^2 + X$ (0x96) $+ X^6 + X^4 + X^2$ (0x54) $= X^7 + X^6 + X$ (0xB2)

Extension fields (esp. over \mathbb{F}_2) are useful to:

- Build polynomial MACs
- Define matrices "over bytes" or nibbles (4-bit values)
 - Used e.g. in the AES
- ► Etc.

They're generally useful when working over binary data

And now for something completely different

Extension fields, HF

Cryptographic hash functions

Hash function

A hash function is a mapping $\mathcal{H}:\mathcal{M}\to\mathcal{D}$

So it really is just a function...

Usually:

- $\mathcal{M} = \bigcup_{\ell < N} \{0, 1\}^{\ell}$, $\mathcal{D} = \{0, 1\}^n$, $N \gg n$
- ▶ *N* is typically $\geq 2^{64}$, $n \in \{1/2\%, 1/6\%, 224, 256, 384, 512\}$

Also popular now: extendable-output functions (XOFs): $\mathcal{D} = \bigcup_{\ell < N'} \{0, 1\}^{\ell}$

- Hash functions are keyless
- So, how do you tell if one's good?

- **1** First preimage: given t, find m s.t. $\mathcal{H}(m) = t$
- **2** Second preimage: given *m*, find $m' \neq m$ s.t. $\mathcal{H}(m) = \mathcal{H}(m')$
- **3** Collision: find $(m, m' \neq m)$ s.t. $\mathcal{H}(m) = \mathcal{H}(m')$

Generic complexity: 1), 2): $\Theta(2^n)$; 3): $\Theta(2^{n/2}) \iff$ "Birthday paradox"

(There's actually more...)

Hash functions are useful for:

- Hash-and-sign (RSA signatures, (EC)DSA, ...)
- building MACs (HMAC, ...)
- Password hashing (with a grain of salt)
- Hash-based signatures (inefficient but PQ)
- In padding schemes (OAEP, ...)
- Etc.
- \Rightarrow A versatile building block, but only a building block

So, how do you build hash functions?

- Objective #1: be secure
- ▶ Objective #2: be efficient
 - Even more than block ciphers!
 - ${}_{\blacktriangleright}$ \Rightarrow work with limited amount of memory

So...

- (#2) Build \mathcal{H} from a *small component*
- ▶ (#1) Prove that this is okay
- \Rightarrow Kind of like a mode of operation!

Compression function

A compression function is a mapping $f: \{0,1\}^n \times \{0,1\}^b \to \{0,1\}^n$

- A family of functions from *n* to *n* bits
- Not unlike a block cipher, only not invertible

Permutation

A permutation is an invertible mapping $\mathfrak{p}: \{0,1\}^n \to \{0,1\}^n$

Yes, very simple

• Like a block cipher with a fixed key, e.g. $\mathfrak{p} = \mathcal{E}(0, \cdot)$

Assume a good ${\mathfrak f}$

- Main problem: fixed-size domain $\{0,1\}^n \times \{0,1\}^b$
- Objective: domain extension to $\bigcup_{\ell < N} \{0, 1\}^{\ell}$

The classical answer: the Merkle-Damgård construction (1989)

That is: $\mathcal{H}(m_1||m_2||m_3||...) = f(\ldots f(f(f(IV, m_1), m_2), m_3), \ldots)$ pad $(m) \approx m||1000\ldots 00\langle \text{length of } m\rangle$

Extension fields, HF

2018-02-14 23/30

MD: does it work?

Efficiency?

- Only sequential calls to f
- \rightarrow fine

Security?

- Still to be shown
- Objective: *reduce* security of \mathcal{H} to that of f
 - "If f is good, then \mathcal{H} is good"
- True for collision and first preimage, **false** for second preimage
- Won't see the details, though (in the end, everything is quite fine)

1 Start like a block cipher

2 Add *feedforward* to prevent invertibility

Examples:

"Davies-Meyer": $f(h, m) = \mathcal{E}_m(h) \boxplus h$ "Matyas-Meyer-Oseas": $f(h, m) = \mathcal{E}_h(m) \boxplus m$

- Systematic analysis by Preneel, Govaerts and Vandewalle (1993). "PGV" constructions
- Then rigorous proofs (in the ideal cipher model) (Black et al., 2002), (Black et al., 2010)

Re: Davies-Meyer

Picture:

Used in MD4/5 SHA-0/1/2, etc.

Extension fields, HF

Why is the "message" the "key"?

- Disconnect chaining value and message length!
- \blacktriangleright ${\cal E}$'s block length: fixed by security level
- \blacktriangleright ${\cal E}$'s key length: fixed by "message" length
- ► Large "key" ⇒ more efficient
- Example: MD5's "block cipher": 128-bit blocks, 512-bit keys

DM incentive: use very simple *message expansion* ("key schedules")

- To be efficient!
- Warning: can be a source of weakness

PGV constructions are proved secure in the *ideal cipher model*, **BUT**

- Real ciphers are not ideal!
- Real ciphers don't have to be ideal to be okay ciphers
 - IDEA (Lai and Massey, 1991): weak key classes (Daemen et al., 1993)
 - ► TEA (Wheeler and Needham, 1994): equivalent keys (Kelsey et al., 1996)
- But using them in DM mode is a very bad idea (Steil, 2005), (Wei et al., 2012)!

Symmetric summary

We have seen:

- Block ciphers
- Mode of operations
- MACs
- Hash functions
- Some security properties

All involve similar/distinct techniques

Holidays light personal work:

- Can you define the above objects?
- Do you know how to build some (roughly)?
- Define a good mode of operation (for confidentiality)
- ... and a bad one

What comes next?

After the holidays:

- Some recap
- The beginning of public key primitives