
MACs, LFSRs 2018–02–07 1/24

Introduction to cryptology (GBIN8U16)
]

Message Authentication Codes, LFSRs

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018–02–07

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html


MACs, LFSRs 2018–02–07 2/24

Authentification (in crypto)

Crypto is not all about encrypting. One may also want to:

▸ Get access to a building/car/spaceship

▸ Electronically sign a contract/software/Git repository

▸ Detect tampering on a message

▸ Detect “identity theft”

▸ Etc.

⇒ domain of digital signatures and/or message authentication
codes (MACs)



MACs, LFSRs 2018–02–07 3/24

A major rule

In the case of a symmetric channel (e.g. on a network):

▸ It may be fine to only authenticate
▸ It is never okay to only encrypt

▸ Recommended reading: Attacking the IPsec Standards in
Encryption-only Configurations (Degabriele and Paterson,
2007; https://eprint.iacr.org/2007/125)

⇒ ”Authenticated encryption” (This is hard to do properly.)

https://eprint.iacr.org/2007/125


MACs, LFSRs 2018–02–07 4/24

Today: MACs (symmetric authentication)

Message authentication code (MAC)

A MAC is a mapping M ∶ K(×R) ×X → T that maps a key,
message (and possibly a (random) nonce) to a tag.

▸ K is for instance {0,1}128 (key space, secret)

▸ R is for instance {0,1}64 (“nonce” space, public, either
“random” or not)

▸ X is for instance ⋃`<264{0,1}` (message space)

▸ T is for instance {0,1}256 (“tag” space)



MACs, LFSRs 2018–02–07 5/24

MACs: what do we want?

Given a MAC M(k, ⋅) with an unknown key, it should be hard to:

▸ Given m, find t s.t. M(k ,m) = t (Universal forgery)

▸ Find m, t s.t. M(k ,m) = t (Existential forgery)

▸ (Of course, retrieving k leads to those)

UF: ability to forge a tag for any message

EF: ability to forge a tag for some message

UF ⇒ EF

More generally, we want M(k, ⋅) to be like a “random function”



MACs, LFSRs 2018–02–07 6/24

Attacking a MAC: what complexity?

The complexity of an attack depends (among others) on:

▸ Its time (T) complexity (“how many operations need to be
computed?”)

▸ Its memory (M) complexity (“how much storage do I need?”)
▸ The memory type: sequential? RAM?

▸ Its query/data (D) complexity (“how many black box/oracle
access are needed?”)

▸ The query type: known message, chosen message?

▸ Its success probability (p)



MACs, LFSRs 2018–02–07 7/24

Attacking a MAC: example

Take M ∶ {0,1}128 ×X → {0,1}64. One has UF attacks with:

▸ T = 1, p = 2−64

▸ T = 2128, M = 1, D = 3, p ≈ 1

And this generically (regardless of what M is)



MACs, LFSRs 2018–02–07 8/24

Generic v. dedicated attacks

Generic attack:

▸ Unavoidable (in a computational setting)

▸ Complexity only depends on security params & objectives

▸ Always work “with some probability”

▸ Dictates key, block sizes etc. (cf. first lecture)

Dedicated attack:

▸ What “breaks” a specific scheme (primitive, protocol...)

▸ (Always) better than the corresponding generic attack



MACs, LFSRs 2018–02–07 9/24

Comments

▸ An algorithm may have no dedicated attack, but could be too
weak against generic ones

▸ Example: the Trivium stream cipher (80-bit keys)

▸ An algorithm may be broken (by a dedicated attack) but
could still be used securely in practice. THIS IS HOWEVER
STRONGLY ADVISED AGAINST!

▸ Example: preimages for the MD4 hash function, T = 295

(Zhong & Lai, 2012) instead of 2128



MACs, LFSRs 2018–02–07 10/24

Examples

Generic:

▸ Guessing the key (of a block cipher, a MAC, etc.)

▸ Guessing the tag (produced by a MAC)

▸ Finding collisions in the outputs of CBC encryption

▸ (Factoring an RSA modulus)

Dedicated:

▸ (Finding a DES key using linear cryptanalysis)

▸ (Computing collisions for SHA-1 using differential
cryptanalysis)

▸ (Recovering an RSA private key using continued fractions)



MACs, LFSRs 2018–02–07 11/24

Back to MACs: how to build ’em?

▸ From scratch

▸ Using a block cipher in a “MAC mode”

▸ Ditto, with a hash function

▸ Using a “polynomial” hash function

▸ Etc.



MACs, LFSRs 2018–02–07 12/24

MACs from block ciphers: CBC-MAC example

Observation:

▸ The last block of CBC-ENC(m) “strongly depends” on the
entire message

▸ ⇒ Take MAC(m) = LastBlockOf(CBC-ENC(m))

▸ Not quite secure as is, but overall a sound idea (cf. TD)

Advantage:

▸ “Only” need a block cipher

Disadvantage:

▸ Not the fastest approach

⇒ Alternative: polynomial MACs



MACs, LFSRs 2018–02–07 13/24

Polynomials

“Polynomials = vectors”

Let m = (m0 m1 . . . mn−1) be a vector of kn, one can interpret

it as M = m0 +m1X + . . . +mn−1X
n−1, a degree-(n − 1) polynomial

of k[X ].

Polynomial evaluation

Let M ∈ k[X ] be a degree-(n − 1) polynomial, the evaluation of M
on an element of k is given by the map
eval(M, ⋅) ∶ x ↦ m0 +m1x + . . . +mn−1x

n.



MACs, LFSRs 2018–02–07 14/24

Polynomial hash functions

Polynomial hash function

Let m ∈ kn be a “message”. The “hash” of m ≡M ∈ k[X ] for the
function Hx is given by eval(M, x).

Some properties:

Hx is linear (over k)

▸ Hx(a + b) =Hx(a) +Hx(b)

∀n ∈ N∗, ∀x ∈ k, ∀a ∈ kn,

▸ Pr[Hx(b) =Hx(a) ∶ b
$
←Ð kn]

▸ = Pr[Hx(b − a) = 0 ∶ b
$
←Ð kn]

▸ = Pr[eval(B −A, x) = 0 ∶ B
$
←Ð k[X ]] ≤ (n − 1)/#k



MACs, LFSRs 2018–02–07 15/24

How’s that useful?

W.h.p., ≠ m⇒≠Hx(m)

▸ E.g. take #k ≈ 2128, n = 232, the “collision probability”
between two messages is ≤ 2−96=32−128

▸ This is “optimum”

Problem: for a MAC, linearity is a weakness! (cf. TD)

▸ One way to solve this: encrypt the result of the hash with a
block cipher!



MACs, LFSRs 2018–02–07 16/24

Polynomial MACs

Toy polynomial MAC

Let H ∶ K ×X → Y be a polynomial hash function family,
E ∶ K

′
×Y → Y be a block cipher. The MAC M ∶ K ×K

′
×X → Y

is defined as M(k , k ′,m) = E(k ′,Hk(m)).

(Remark: not randomized)

Advantage of polynomial MACs:

▸ Fast
▸ Good and “simple” security

▸ But still rely on block ciphers and friends!

Examples: UMAC; VMAC; Poly1305-AES; NaT (more
sophisticated variant of the above), NaK, HaT, HaK



MACs, LFSRs 2018–02–07 17/24

Re: finite fields

Polynomial hash functions ⇒ need large finite fields (for good sec.)
Two options:

▸ Prime fields Z/pZ for a large prime p (e.g. p = 2130 − 5)

▸ Extension fields Fq, q = pn for a prime p (e.g. q = 2128)

So:

▸ How do you “build” extension fields?

⇒ Let’s see Linear Feedback Shift Registers (LFSRs) first



MACs, LFSRs 2018–02–07 18/24

LFSRs

LFSR (type 1)

An LFSR of length n over a field k is a map
L ∶ [sn−1, sn−2, . . . , s0]↦
[sn−2 + sn−1rn−1, sn−3 + sn−1rn−2, . . . , s0 + sn−1r1, sn−1r0] where the si ,
ri ∈ k

LFSR (type 2)

An LFSR of length n over a field k is a map
L ∶ [sn−1, sn−2, . . . , s0]↦
[sn−2, sn−3, . . . , s0, sn−1rn−1+ sn−2rn−2+ . . .+ s0r0] where the si , ri ∈ k

Theorem: The two above definitions are “equivalent”



MACs, LFSRs 2018–02–07 19/24

Characterization

An LFSR is fully determined by:

▸ Its base field k

▸ Its state size n

▸ Its feedback function (rn−1, rn−2, . . . , r0)

An LFSR may be used to generate an infinite sequence (Um)

(valued in k):

1 Choose an initial state S = [sn−1, . . . , s0]

2 U0 = S[n − 1] = sn−1

3 U1 = L(S)[n − 1]

4 U2 = L
2
(S)[n − 1], etc.



MACs, LFSRs 2018–02–07 20/24

Some properties

▸ The sequence generated by an LFSR is periodic (Q: Why?)

▸ Some LFSRs map non-zero initial states to the zero one (Q:
Give an example?)

▸ Some LFSRs generate a sequence of maximal period (Q:
What is it?)

▸ It is very easy to recover the feedback function of an LFSR
from (enough outputs of) its generated sequence (Q: How?)



MACs, LFSRs 2018–02–07 21/24

A simple case: binary LFSRs

We will in fact mostly care about:

▸ LFSRs of type 1

▸ Over F2

L becomes:

1 Shift bits to the left

2 If the (previous) msb was 1

1 Add (XOR) 1 to some state positions (given by the feedback
function)



MACs, LFSRs 2018–02–07 22/24

Some formalism

The feedback function of an LFSR can be written as a polynomial:

▸ (rn−1, rn−2, . . . , r0) ≡ X n
+ rn−1X

n−1
+ . . . + r1X + r0

▸ L corresponds to the multiplication by X mod the feedback
polynomial

▸ For simplicity: “just a notation”

Example:

▸ Take L of length 4 over F2 and feedback polynomial
X 4

+X + 1

▸ ⇒ L ∶ (s3, s2, s1, s0)↦ (s2, s1, s0 ⊕ s3, s3)



MACs, LFSRs 2018–02–07 23/24

Why should I care about those?

▸ Useful as a basis for stream ciphers (in the olden times,
mostly)

▸ One way to define/compute with extension fields (e.g.
example from previous slide; see more next week)

▸ (Notice that the structure is kind of like a Feistel)

▸ It’s beautiful?



MACs, LFSRs 2018–02–07 24/24

Next week

▸ Hash functions (not linear ones this time)

▸ Extensions of F2


