Introduction to cryptology (GBIN8U16)
 Message Authentication Codes, LFSRs

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-02-07

Authentification (in crypto)

Crypto is not all about encrypting. One may also want to:

- Get access to a building/car/spaceship
- Electronically sign a contract/software/Git repository
- Detect tampering on a message
- Detect "identity theft"
- Etc.
\Rightarrow domain of digital signatures and/or message authentication codes (MACs)

A major rule

In the case of a symmetric channel (e.g. on a network):

- It may be fine to only authenticate
- It is never okay to only encrypt
- Recommended reading: Attacking the IPsec Standards in Encryption-only Configurations (Degabriele and Paterson, 2007; https://eprint.iacr.org/2007/125)
\Rightarrow "Authenticated encryption" (This is hard to do properly.)

Today: MACs (symmetric authentication)

Message authentication code (MAC)

A MAC is a mapping $\mathcal{M}: \mathcal{K}(\times \mathcal{R}) \times \mathcal{X} \rightarrow \mathcal{T}$ that maps a key, message (and possibly a (random) nonce) to a tag.

- \mathcal{K} is for instance $\{0,1\}^{128}$ (key space, secret)
- \mathcal{R} is for instance $\{0,1\}^{64}$ ("nonce" space, public, either "random" or not)
- \mathcal{X} is for instance $\bigcup_{\ell<2^{64}}\{0,1\}^{\ell}$ (message space)
- \mathcal{T} is for instance $\{0,1\}^{256}$ ("tag" space)

MACs: what do we want?

Given a MAC $\mathcal{M}(k, \cdot)$ with an unknown key, it should be hard to:

- Given m, find t s.t. $\mathcal{M}(k, m)=t$ (Universal forgery)
- Find m, t s.t. $\mathcal{M}(k, m)=t$ (Existential forgery)
- (Of course, retrieving k leads to those)

UF: ability to forge a tag for any message
EF: ability to forge a tag for some message
$\mathrm{UF} \Rightarrow \mathrm{EF}$
More generally, we want $\mathcal{M}(k, \cdot)$ to be like a "random function"

Attacking a MAC: what complexity?

The complexity of an attack depends (among others) on:

- Its time (T) complexity ("how many operations need to be computed?")
- Its memory (M) complexity ("how much storage do I need?")
- The memory type: sequential? RAM?
- Its query/data (D) complexity ("how many black box/oracle access are needed?")
- The query type: known message, chosen message?
- Its success probability (p)

Attacking a MAC: example

Take $\mathcal{M}:\{0,1\}^{128} \times \mathcal{X} \rightarrow\{0,1\}^{64}$. One has UF attacks with:

- $\mathrm{T}=1, p=2^{-64}$
- $\mathrm{T}=2^{128}, \mathrm{M}=1, \mathrm{D}=3, p \approx 1$

And this generically (regardless of what \mathcal{M} is)

Generic v. dedicated attacks

Generic attack:

- Unavoidable (in a computational setting)
- Complexity only depends on security params \& objectives
- Always work "with some probability"
- Dictates key, block sizes etc. (cf. first lecture)

Dedicated attack:

- What "breaks" a specific scheme (primitive, protocol...)
- (Always) better than the corresponding generic attack

Comments

- An algorithm may have no dedicated attack, but could be too weak against generic ones
- Example: the Trivium stream cipher (80-bit keys)
- An algorithm may be broken (by a dedicated attack) but could still be used securely in practice. THIS IS HOWEVER STRONGLY ADVISED AGAINST!
- Example: preimages for the MD4 hash function, $\mathrm{T}=2^{95}$ (Zhong \& Lai, 2012) instead of 2^{128}

Examples

Generic:

- Guessing the key (of a block cipher, a MAC, etc.)
- Guessing the tag (produced by a MAC)
- Finding collisions in the outputs of CBC encryption
- (Factoring an RSA modulus)

Dedicated:

- (Finding a DES key using linear cryptanalysis)
- (Computing collisions for SHA-1 using differential cryptanalysis)
- (Recovering an RSA private key using continued fractions)

Back to MACs: how to build 'em?

- From scratch
- Using a block cipher in a "MAC mode"
- Ditto, with a hash function
- Using a "polynomial" hash function
- Etc.

MACs from block ciphers: CBC-MAC example

Observation:
" The last block of CBC-ENC(m) "strongly depends" on the entire message
\Rightarrow Take MAC(m) $=$ LastBlockOf(CBC-ENC(m))

- Not quite secure as is, but overall a sound idea (cf. TD)

Advantage:

- "Only" need a block cipher

Disadvantage:

- Not the fastest approach
\Rightarrow Alternative: polynomial MACs

Polynomials

"Polynomials $=$ vectors"

Let $m=\left(\begin{array}{llll}m_{0} & m_{1} & \ldots & m_{n-1}\end{array}\right)$ be a vector of k^{n}, one can interpret it as $M=m_{0}+m_{1} X+\ldots+m_{n-1} X^{n-1}$, a degree- $(n-1)$ polynomial of $k[X]$.

Polynomial evaluation

Let $M \in k[X]$ be a degree- $(n-1)$ polynomial, the evaluation of M on an element of k is given by the map $\operatorname{eval}(M, \cdot): x \mapsto m_{0}+m_{1} x+\ldots+m_{n-1} x^{n}$.

Polynomial hash functions

Polynomial hash function

Let $m \in k^{n}$ be a "message". The "hash" of $m \equiv M \in k[X]$ for the function \mathcal{H}_{x} is given by $\operatorname{eval}(M, x)$.

Some properties:
\mathcal{H}_{x} is linear (over k)

$$
\text { - } \mathcal{H}_{x}(a+b)=\mathcal{H}_{x}(a)+\mathcal{H}_{x}(b)
$$

$\forall n \in \mathbb{N}^{*}, \forall x \in k, \forall a \in k^{n}$,

- $\operatorname{Pr}\left[\mathcal{H}_{x}(b)=\mathcal{H}_{x}(a): b \stackrel{\Phi}{\leftarrow} k^{n}\right]$
- $=\operatorname{Pr}\left[\mathcal{H}_{x}(b-a)=0: b \stackrel{\S}{\leftarrow} k^{n}\right]$
- $=\operatorname{Pr}[\operatorname{eval}(B-A, x)=0: B \stackrel{\Phi}{\leftarrow} k[X]] \leq(n-1) / \# k$

How's that useful?

W.h.p., $\neq m \Rightarrow \neq \mathcal{H}_{x}(m)$

- E.g. take $\# k \approx 2^{128}, n=2^{32}$, the "collision probability" between two messages is $\leq 2^{-96=32-128}$
- This is "optimum"

Problem: for a MAC, linearity is a weakness! (cf. TD)

- One way to solve this: encrypt the result of the hash with a block cipher!

Polynomial MACs

Toy polynomial MAC

Let $\mathcal{H}: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a polynomial hash function family, $\mathcal{E}: \mathcal{K}^{\prime} \times \mathcal{Y} \rightarrow \mathcal{Y}$ be a block cipher. The MAC $\mathcal{M}: \mathcal{K} \times \mathcal{K}^{\prime} \times \mathcal{X} \rightarrow \mathcal{Y}$ is defined as $\mathcal{M}\left(k, k^{\prime}, m\right)=\mathcal{E}\left(k^{\prime}, \mathcal{H}_{k}(m)\right)$.
(Remark: not randomized)
Advantage of polynomial MACs:

- Fast
- Good and "simple" security
- But still rely on block ciphers and friends!

Examples: UMAC; VMAC; Poly1305-AES; NaT (more sophisticated variant of the above), NaK, HaT, HaK

Re: finite fields

Polynomial hash functions \Rightarrow need large finite fields (for good sec.) Two options:

- Prime fields $\mathbb{Z} / p \mathbb{Z}$ for a large prime p (e.g. $p=2^{130}-5$)
- Extension fields $\mathbb{F}_{q}, q=p^{n}$ for a prime p (e.g. $\left.q=2^{128}\right)$

So:

- How do you "build" extension fields?
\Rightarrow Let's see Linear Feedback Shift Registers (LFSRs) first

LFSRs

LFSR (type 1)

An LFSR of length n over a field k is a map
$\mathcal{L}:\left[s_{n-1}, s_{n-2}, \ldots, s_{0}\right] \mapsto$
$\left[s_{n-2}+s_{n-1} r_{n-1}, s_{n-3}+s_{n-1} r_{n-2}, \ldots, s_{0}+s_{n-1} r_{1}, s_{n-1} r_{0}\right]$ where the s_{i}, $r_{i} \in k$

LFSR (type 2)

An LFSR of length n over a field k is a map
$\mathcal{L}:\left[s_{n-1}, s_{n-2}, \ldots, s_{0}\right] \mapsto$
$\left[s_{n-2}, s_{n-3}, \ldots, s_{0}, s_{n-1} r_{n-1}+s_{n-2} r_{n-2}+\ldots+s_{0} r_{0}\right]$ where the $s_{i}, r_{i} \in k$
Theorem: The two above definitions are "equivalent"

Characterization

An LFSR is fully determined by:

- Its base field k
- Its state size n
- Its feedback function $\left(r_{n-1}, r_{n-2}, \ldots, r_{0}\right)$

An LFSR may be used to generate an infinite sequence (U_{m}) (valued in k):
1 Choose an initial state $S=\left[s_{n-1}, \ldots, s_{0}\right]$
$2 U_{0}=S[n-1]=s_{n-1}$
[3 $U_{1}=\mathcal{L}(S)[n-1]$
(4) $U_{2}=\mathcal{L}^{2}(S)[n-1]$, etc.

Some properties

- The sequence generated by an LFSR is periodic (Q: Why?)
- Some LFSRs map non-zero initial states to the zero one (Q: Give an example?)
- Some LFSRs generate a sequence of maximal period (Q: What is it?)
- It is very easy to recover the feedback function of an LFSR from (enough outputs of) its generated sequence (Q: How?)

A simple case: binary LFSRs

We will in fact mostly care about:

- LFSRs of type 1
- Over \mathbb{F}_{2}
\mathcal{L} becomes:
1 Shift bits to the left
2 If the (previous) msb was 1
1 Add (XOR) 1 to some state positions (given by the feedback function)

Some formalism

The feedback function of an LFSR can be written as a polynomial:

- $\left(r_{n-1}, r_{n-2}, \ldots, r_{0}\right) \equiv X^{n}+r_{n-1} X^{n-1}+\ldots+r_{1} X+r_{0}$
- \mathcal{L} corresponds to the multiplication by X mod the feedback polynomial
- For simplicity: "just a notation"

Example:

- Take \mathcal{L} of length 4 over \mathbb{F}_{2} and feedback polynomial $X^{4}+X+1$
- $\Rightarrow \mathcal{L}:\left(s_{3}, s_{2}, s_{1}, s_{0}\right) \mapsto\left(s_{2}, s_{1}, s_{0} \oplus s_{3}, s_{3}\right)$

Why should I care about those?

- Useful as a basis for stream ciphers (in the olden times, mostly)
- One way to define/compute with extension fields (e.g. example from previous slide; see more next week)
- (Notice that the structure is kind of like a Feistel)
- It's beautiful?

Next week

- Hash functions (not linear ones this time)
- Extensions of \mathbb{F}_{2}

