
Finite fields, block ciphers 2018–01–31 1/31

Introduction to cryptology (GBIN8U16)
]

Finite fields, block ciphers

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018–01–31

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html


Finite fields, block ciphers 2018–01–31 2/31

Bits as field elements

▸ Digital processing of information ↝ dealing with bits

▸ Error-correcting codes, crypto ↝ need analysis ↝ maths

▸ ⇒ bits (no structure) ↦ field elements (math object)

▸ “Natural” match: {0,1} ≅ F2 ≡ Z/2Z ≡ “(natural) integers
modulo 2”

▸ F2: two elements (0, 1), two operations (+, ×)



Finite fields, block ciphers 2018–01–31 3/31

What’s F2 like?

▸ Addition ≡ exclusive or (XOR (⊕))

▸ Multiplication ≡ logical and (∧)

▸ ⇒ “Boolean” arithmetic

▸ Fact: any Boolean function f ∶ {0,1}n → {0,1} can be
computed using only ⊕ and ∧

▸ Fact 2: ditto, g ∶ {0,1}n → {0,1}m
▸ Fact 3: ditto, using NAND (¬ ○ ∧)



Finite fields, block ciphers 2018–01–31 4/31

One bit is nice, but...

▸ We rather need bit strings {0,1}n than single bits

▸ Now two “natural” matches:

▸ Fn
2 (vectors over F2)
▸ Can add two vectors
▸ Cannot multiply “internally” (but there’s a dot/scalar product)

▸ Z/2nZ (natural integers modulo 2n)
▸ Can add, multiply
▸ Not all elements are invertible (e.g. 2) ⇒ only a ring



Finite fields, block ciphers 2018–01–31 5/31

A third way

▸ Also possible: F2n : an extension field
▸ Addition “like in Fn

2”
▸ Plus an internal multiplication
▸ All elements (except zero) are invertible

▸ Not for today!



Finite fields, block ciphers 2018–01–31 6/31

Why are these useful?

▸ Allows to perform operations on inputs
▸ E.g. adding two messages together

▸ Vector spaces ⇒ linear algebra (matrices)
▸ Powerful tools to solve “easy” problems
▸ (Intuition: crypto shouldn’t be linear)

▸ Fields ⇒ polynomials
▸ With one or more variable
▸ ⇒ Can compute differentials

▸ Can mix Fn
2, Z/2nZ to make things “hard”

▸ Popular “ARX” strategy in symmetric cryptography
(FEAL/MD5/SHA-1/Chacha/Speck/...)



Finite fields, block ciphers 2018–01–31 7/31

Block ciphers: “simple” binary mappings

Block ciphers

A block cipher is a mapping E ∶ K ×M→M′ s.t. ∀k ∈ K, E(k , ⋅)
is invertible

In practice, most of the time:

▸ Keys K = {0,1}κ, with κ ∈ {64,80,96,112,128,192,256} (but
e.g. 64’s too short)

▸ Plaintexts/ciphertexts M=M′ = {0,1}n, with
n ∈ {64,128,256}

Note

Block cipher inputs are bits, not vectors; field, ring elements



Finite fields, block ciphers 2018–01–31 8/31

Block ciphers: for what?

Ultimate goal: symmetric encryption

▸ plaintext + key ↦ ciphertext

▸ ciphertext + key ↦ plaintext

▸ ciphertext ↦ ???

With arbitrary plaintexts ∈ {0,1}∗

Block ciphers: do that for plaintexts ∈ {0,1}n
▸ (Very) small example: 32 randomly shuffled cards = 5-bit

block cipher

▸ Typical block sizes n = “what’s easy to implement”



Finite fields, block ciphers 2018–01–31 9/31

Block ciphers: only a building block

A “vanilla” block cipher is useless

▸ Only works on fixed-size inputs
▸ Is not randomized (remember?)

▸ Fix k , x ⇒ E(k , x) always the same
▸ ⇒ leaks information about repeated messages

▸ (Does not authenticate coms)

⇒ Use block ciphers with a mode of operation



Finite fields, block ciphers 2018–01–31 10/31

Encryption modes

Randomized encryption scheme

An encryption scheme is a mapping E ∶ K ×R ×M→M′ s.t.
∀k ∈ K, ∀r ∈ R, E(k , r , ⋅) is invertible

With e.g.

▸ plaintexts/ciphertexts M=M′ = ⋃`≤240{0,1}128`
▸ keys K
▸ public randomness R

▸ Encryption scheme ≈ block cipher + mode of operation



Finite fields, block ciphers 2018–01–31 11/31

Criteria for a mode

Not all modes are equivalent

▸ How much can you encrypt? (In function of {0,1}n)

▸ With what security?

▸ With what performance?

▸ (Do you get auth?)

Classical examples: ECB (not a mode), CBC, CTR



Finite fields, block ciphers 2018–01–31 12/31

ECB (not a mode, for reference)

Electronic Code Book mode

m0∣∣m1∣∣ . . . ↦ E(k,m0)∣∣ E(k,m1)∣∣ . . .

▸ Vanilla use of the block cipher

▸ Efficient

▸ No security



Finite fields, block ciphers 2018–01–31 13/31

CBC (classical, not so great)

Cipher Block Chaining mode

r ×m0∣∣m1∣∣ . . . ↦ c0 ∶= E(k ,m0 ⊕ r)∣∣c1 ∶= E(k,m1 ⊕ c0)∣∣ . . .

▸ Chain blocks together (duh)
▸ Output block i (ciphtertext) added (XORed) w/ input block
i + 1 (plaintext)

▸ For first (m0) block: use random IV r

▸ Sequential ↝ not so efficient

▸ Need E−1 to decrypt
▸ Security in the square root of the block size = “birthday

bound” (no details for now)
▸ E.g., 128-bit blocks ⇒ change key before encrypting ≪ 264

blocks



Finite fields, block ciphers 2018–01–31 14/31

CBC: need random IVs

CBC is not IND-CPA if the IVs are not random

▸ Attacker asks E −CBC(m), gets r , c = E(k ,m ⊕ r)
▸ Knows that next IV = x

▸ Sends two challenges m0 = m ⊕ r ⊕ x , m1
$←ÐM

▸ Gets cb = E −CBC(mb), b
$←Ð {0,1}

▸ If cb = c, guess b = 0, else b = 1



Finite fields, block ciphers 2018–01–31 15/31

CTR mode (classical, better)

Counter mode

r ×m0∣∣m1∣∣ . . . ↦ E(k, r) ⊕m0∣∣ E(k , r + 1) ⊕m1∣∣ . . .

▸ Like a stream cipher
▸ Encrypt a public counter ⇒ pseudo-random keystream
▸ Add (XOR) the keystream and the message

▸ Parallel ↝ efficient (multi-core, pipelining & all)

▸ “Inverse-free”: don’t need E−1 to decrypt

▸ Security up to the birthday bound (like CBC)

▸ This time, r can be known in advance (but cannot repeat!)



Finite fields, block ciphers 2018–01–31 16/31

Other nice modes

▸ CENC (CTR-like, “beyond birthday”)

▸ OCB (Authenticated-Encryption (AE) mode)

▸ GCM (ditto)

▸ TAE (OCB-like w/ tweakable block ciphers)

▸ OTR (OCB-like, inverse-free)

Maybe for another day...



Finite fields, block ciphers 2018–01–31 17/31

Back to BCs: how do you build one?

▸ Many design strategies
▸ Different choices possible at

▸ high level (main structure)
▸ low level (tiny building blocks)

▸ Two brief examples today: Feistel, SPN
▸ In both cases: define a round function, iterate it many times



Finite fields, block ciphers 2018–01–31 18/31

Feistel ladder/networks

▸ A framework to extend the domain of a function (not
necessarily invertible)

▸ Very versatile, can be used to build
▸ Block ciphers (obvs.) / Hash functions
▸ Modes of operation (e.g. OTR)
▸ Padding schemes (e.g. OAEP)
▸ S-boxes (part of block ciphers)
▸ Etc.



Finite fields, block ciphers 2018–01–31 19/31

Feistels: main idea

Basic equations (two-branch Feistel):

▸ (L,R) ↦ (L′ = R,R ′ = L⊕ F (R)) (forward)

▸ (L′,R ′) ↦ (L = R ′ ⊕ F (L′),R = L′) (backward)

▸ ⇒ Don’t need F−1 to invert (does not need to be defined!)

▸ Can iterate to many rounds, with possibly different F s

Then, can extend (in many ways) to more than two branches!



Finite fields, block ciphers 2018–01–31 20/31

A Feistel, in picture

F1

F2

F3

L0 R0

L3 R3

Figure: 3-Round Feistel (https://www.iacr.org/authors/tikz/)

https://www.iacr.org/authors/tikz/


Finite fields, block ciphers 2018–01–31 21/31

We’re not done, tho

▸ Q.1 How to build F?

▸ Q.2 How to add a key?

⇒ No single answer, but for instance

▸ A.1.1 Use random-looking small tables (S-boxes)

▸ A.1.2 Mix operations in Fn
2, Z/2nZ, Boolean functions (ARX)

▸ A.2.1 Add a key before/after F

▸ A.2.2 Use key-dependent F

▸ Etc.



Finite fields, block ciphers 2018–01–31 22/31

The TWINE round function

F i
0

xi
0 xi

1

xi+1
0 xi+1

1

F i
2

xi
2 xi

3

xi+1
2 xi+1

3

F i
4

xi
4 xi

5

xi+1
4 xi+1

5

F i
6

xi
6 xi

7

xi+1
6 xi+1

7

F i
8

xi
8 xi

9

xi+1
8 xi+1

9

F i
10

xi
10 xi

11

xi+1
10 xi+1

11

F i
12

xi
12 xi

13

xi+1
12 xi+1

13

F i
14

xi
14 xi

15

xi+1
14 xi+1

15

RKi
0 RKi

1 RKi
2 RKi

3 RKi
4 RKi

5 RKi
6 RKi

7

Figure: One round of TWINE
(https://www.iacr.org/authors/tikz/)

https://www.iacr.org/authors/tikz/


Finite fields, block ciphers 2018–01–31 23/31

One SHA-1 step

Ai Bi Ci Di Ei

	 5

� 2

φi÷20

Ei+1Di+1Ci+1Bi+1Ai+1

Wi

Ki÷20

Figure: One SHA-1 step (compression function, ≈ block cipher)



Finite fields, block ciphers 2018–01–31 24/31

Another way: Substitution Permutation Networks

One round: compose S and P where:

▸ P is an invertible matrix over F2 (i.e. P ∈ GLn(F2))
▸ S is not F2-linear

▸ (Plus add a key at some point)

Often

▸ P is a permutation matrix

▸ Or a sparse matrix (e.g. composition of block diagonal and
permutation)

▸ S is made of small invertible S-boxes



Finite fields, block ciphers 2018–01–31 25/31

Small drawing: better than long description

x

/ n = 7 × b

/ b / b / b / b / b / b / b

S S S S SS S

/ b / b / b / b/ b / b / b

P

/ n

y

Figure: SPN, still quite abstract



Finite fields, block ciphers 2018–01–31 26/31

Example: PRESENT

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ki

ki+1

Figure: Two rounds of PRESENT
(https://www.iacr.org/authors/tikz/)

https://www.iacr.org/authors/tikz/


Finite fields, block ciphers 2018–01–31 27/31

Example: AES

↝ blackboard



Finite fields, block ciphers 2018–01–31 28/31

Why not a single block cipher?

“It’s all about context” ⇒ objectives?

▸ Fast?

▸ Small?

▸ Secure? (LOL)

▸ Versatile?

▸ Dedicated?

▸ Software/hardware?

▸ Etc.

We’ve barely scratched the surface



Finite fields, block ciphers 2018–01–31 29/31

Anyways, what’s a secure one?

▸ Let Perm(M) be the set of the (#M)! permutations of M
▸ Ideally, ∀k, E(k , ⋅) $←Ð Perm(M)
▸ In practice, good enough if E is a “good” pseudo-random

permutation (PRP):
▸ An adversary has access to an oracle O
▸ In one world, O

$←Ð Perm(M)
▸ In another, k

$←Ð K, O = E(k , ⋅)
▸ The adversary cannot tell in which world he leaves

▸ Example: E cannot be F2-linear (or even “close to”)



Finite fields, block ciphers 2018–01–31 30/31

Next week

▸ Extensions of F2

▸ LFSRs

▸ MACs



Finite fields, block ciphers 2018–01–31 31/31

References

▸ Knudsen & Robshaw, The Block Cipher Companion

▸ Daemen & Rijmen, The Design of Rijndael


