Introduction to cryptology (GBIN8U16) Finite fields, block ciphers

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-01-31

Finite fields, block ciphers

^{2018–01–31} 1/31

- Digital processing of information ~> dealing with bits
- ▶ Error-correcting codes, crypto → need analysis → maths
- ▶ \Rightarrow bits (no structure) \mapsto field elements (math object)
- ▶ "Natural" match: $\{0,1\} \cong \mathbb{F}_2 \equiv \mathbb{Z}/2\mathbb{Z} \equiv$ "(natural) integers modulo 2"
- \mathbb{F}_2 : two elements (0, 1), two operations (+, ×)

- Addition \equiv exclusive or (XOR (\oplus))
- Multiplication \equiv logical and (\land)
- $\bullet \Rightarrow$ "Boolean" arithmetic
- ▶ Fact: any Boolean function $f : \{0,1\}^n \to \{0,1\}$ can be computed using only \oplus and \land
- Fact 2: ditto, $g : \{0,1\}^n \rightarrow \{0,1\}^m$
- Fact 3: ditto, using NAND $(\neg \circ \land)$

- We rather need bit strings $\{0,1\}^n$ than single bits
- Now two "natural" matches:
- \mathbb{F}_2^n (vectors over \mathbb{F}_2)
 - Can add two vectors
 - Cannot multiply "internally" (but there's a dot/scalar product)
- $\mathbb{Z}/2^n\mathbb{Z}$ (natural integers modulo 2^n)
 - Can add, multiply
 - ▶ Not all elements are invertible (e.g. 2) \Rightarrow only a ring

A third way

- Also possible: \mathbb{F}_{2^n} : an *extension* field
 - Addition "like in \mathbb{F}_2^{n} "
 - Plus an internal multiplication
 - All elements (except zero) are invertible
- Not for today!

- Allows to perform operations on inputs
 - E.g. adding two messages together
- Vector spaces \Rightarrow linear algebra (matrices)
 - Powerful tools to solve "easy" problems
 - (Intuition: crypto shouldn't be linear)
- Fields ⇒ polynomials
 - With one or more variable
 - ightarrow \Rightarrow Can compute differentials
- Can mix \mathbb{F}_2^n , $\mathbb{Z}/2^n\mathbb{Z}$ to make things "hard"
 - Popular "ARX" strategy in symmetric cryptography (FEAL/MD5/SHA-1/Chacha/Speck/...)

Block ciphers

A block cipher is a mapping $\mathcal{E} : \mathcal{K} \times \mathcal{M} \to \mathcal{M}'$ s.t. $\forall k \in \mathcal{K}, \mathcal{E}(k, \cdot)$ is invertible

In practice, most of the time:

- Keys $\mathcal{K} = \{0, 1\}^{\kappa}$, with $\kappa \in \{64, 80, 96, 112, 128, 192, 256\}$ (but e.g. 64's too short)
- Plaintexts/ciphertexts $\mathcal{M} = \mathcal{M}' = \{0, 1\}^n$, with $n \in \{64, 128, 256\}$

Note

Block cipher inputs are *bits*, not vectors; field, ring elements

Ultimate goal: symmetric encryption

- plaintext + key \mapsto ciphertext
- ciphertext + key \mapsto plaintext
- ciphertext → ???

With arbitrary plaintexts $\in \{0, 1\}^*$

Block ciphers: do that for plaintexts $\in \{0,1\}^n$

- (Very) small example: 32 randomly shuffled cards = 5-bit block cipher
- Typical block sizes n = "what's easy to implement"

- A "vanilla" block cipher is useless
 - Only works on fixed-size inputs
 - Is not randomized (remember?)
 - Fix $k, x \Rightarrow \mathcal{E}(k, x)$ always the same
 - $ightarrow \Rightarrow$ leaks information about repeated messages
 - (Does not authenticate coms)
- \Rightarrow Use block ciphers with a mode of operation

Randomized encryption scheme

An encryption scheme is a mapping $\boldsymbol{\mathcal{K}} : \mathcal{K} \times \mathcal{R} \times \mathcal{M} \to \mathcal{M}'$ s.t. $\forall k \in \mathcal{K}, \forall r \in \mathcal{R}, \boldsymbol{\mathcal{K}}(k, r, \cdot)$ is invertible

With e.g.

- ${\scriptstyle \triangleright}$ plaintexts/ciphertexts $\mathcal{M}=\mathcal{M}'=\bigcup_{\ell\leq 2^{40}}\{0,1\}^{128\ell}$
- keys ${\cal K}$
- public randomness ${\cal R}$
- Encryption scheme \approx block cipher + mode of operation

Criteria for a mode

Not all modes are equivalent

- How much can you encrypt? (In function of $\{0,1\}^n$)
- With what security?
- With what performance?
- (Do you get auth?)

Classical examples: ECB (not a mode), CBC, CTR

Electronic Code Book mode $m_0 || m_1 || \ldots \mapsto \mathcal{E}(k, m_0) || \mathcal{E}(k, m_1) || \ldots$

- Vanilla use of the block cipher
- Efficient
- No security

Cipher Block Chaining mode

 $r \times m_0 ||m_1|| \ldots \mapsto c_0 \coloneqq \mathcal{E}(k, m_0 \oplus r) ||c_1 \coloneqq \mathcal{E}(k, m_1 \oplus c_0)|| \ldots$

- Chain blocks together (duh)
 - Output block *i* (ciphtertext) added (XORed) w/ input block *i* + 1 (plaintext)
 - For first (m_0) block: use random IV r
- ▶ Sequential ~> not so efficient
- Need \mathcal{E}^{-1} to decrypt
- Security in the square root of the block size = "birthday bound" (no details for now)
 - \blacktriangleright E.g., 128-bit blocks \Rightarrow change key before encrypting $\ll 2^{64}$ blocks

CBC is not IND-CPA if the IVs are not random

- Attacker asks \mathcal{E} –CBC(m), gets $r, c = \mathcal{E}(k, m \oplus r)$
- Knows that next IV = x
- Sends two challenges $m_0 = m \oplus r \oplus x$, $m_1 \stackrel{\$}{\leftarrow} \mathcal{M}$
- Gets $c_b = \mathcal{E} CBC(m_b), b \stackrel{\$}{\leftarrow} \{0, 1\}$
- If $c_b = c$, guess b = 0, else b = 1

CTR mode (classical, better)

Counter mode

 $r \times m_0 ||m_1|| \ldots \mapsto \mathcal{E}(k,r) \oplus m_0 || \mathcal{E}(k,r+1) \oplus m_1 || \ldots$

- Like a stream cipher
 - Encrypt a public counter \Rightarrow pseudo-random keystream
 - Add (XOR) the keystream and the message
- Parallel → efficient (multi-core, pipelining & all)
- "Inverse-free": don't need \mathcal{E}^{-1} to decrypt
- Security up to the birthday bound (like CBC)
- This time, r can be known in advance (but cannot repeat!)

- CENC (CTR-like, "beyond birthday")
- OCB (Authenticated-Encryption (AE) mode)
- GCM (ditto)
- TAE (OCB-like w/ tweakable block ciphers)
- OTR (OCB-like, inverse-free)

Maybe for another day...

- Many design strategies
- Different choices possible at
 - high level (main structure)
 - Iow level (tiny building blocks)
- Two brief examples today: Feistel, SPN
 - In both cases: define a round function, iterate it many times

- A framework to extend the domain of a function (not necessarily invertible)
- Very versatile, can be used to build
 - Block ciphers (obvs.) / Hash functions
 - Modes of operation (e.g. OTR)
 - Padding schemes (e.g. OAEP)
 - S-boxes (part of block ciphers)
 - Etc.

Basic equations (two-branch Feistel):

►
$$(L, R) \mapsto (L' = R, R' = L \oplus F(R))$$
 (forward)

$$(L', R') \mapsto (L = R' \oplus F(L'), R = L') \text{ (backward)}$$

- ▶ ⇒ Don't need F^{-1} to invert (does not need to be defined!)
- \triangleright Can iterate to many rounds, with possibly different Fs

Then, can extend (in many ways) to more than two branches!

A Feistel, in picture

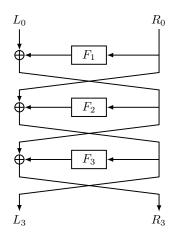


Figure: 3-Round Feistel (https://www.iacr.org/authors/tikz/)

Finite fields, block ciphers

- Q.1 How to build *F*?
- Q.2 How to add a key?
- \Rightarrow No single answer, but for instance
 - A.1.1 Use random-looking small tables (S-boxes)
 - A.1.2 Mix operations in \mathbb{F}_2^n , $\mathbb{Z}/2^n\mathbb{Z}$, Boolean functions (ARX)
 - A.2.1 Add a key before/after F
 - A.2.2 Use key-dependent F
 - Etc.

The TWINE round function

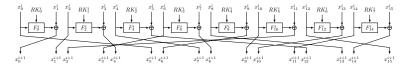


Figure: One round of TWINE (https://www.iacr.org/authors/tikz/)

One SHA-1 step

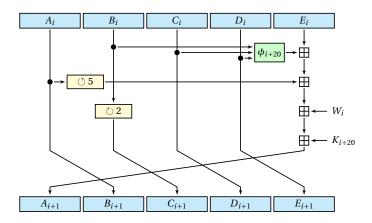


Figure: One SHA-1 step (compression function, ≈ block cipher)

One round: compose S and P where:

- *P* is an invertible matrix over \mathbb{F}_2 (i.e. $P \in GL_n(\mathbb{F}_2)$)
- S is not \mathbb{F}_2 -linear
- (Plus add a key at some point)

Often

- *P* is a permutation matrix
- Or a sparse matrix (e.g. composition of block diagonal and permutation)
- ▶ *S* is made of small invertible S-boxes

Small drawing: better than long description

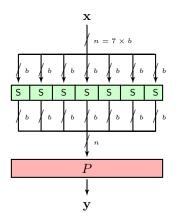


Figure: SPN, still quite abstract

Finite fields, block ciphers

2018-01-31 25/31

Example: PRESENT

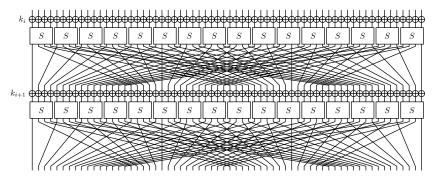


Figure: Two rounds of PRESENT
(https://www.iacr.org/authors/tikz/)

Finite fields, block ciphers

²⁰¹⁸⁻⁰¹⁻³¹ **26/31**

Example: AES

 \rightsquigarrow blackboard

Finite fields, block ciphers

Why not a single block cipher?

"It's all about context" \Rightarrow objectives?

- ► Fast?
- Small?
- Secure? (LOL)
- Versatile?
- Dedicated?
- Software/hardware?
- Etc.

We've barely scratched the surface

- Let $\mathsf{Perm}(\mathcal{M})$ be the set of the $(\#\mathcal{M})!$ permutations of \mathcal{M}
- Ideally, $\forall k, \mathcal{E}(k, \cdot) \stackrel{s}{\leftarrow} \operatorname{Perm}(\mathcal{M})$
- In practice, good enough if *E* is a "good" pseudo-random permutation (PRP):
 - $\,\,$ An adversary has access to an oracle ${oldsymbol {\mathfrak O}}$
 - ▶ In one world, $\mathfrak{G} \stackrel{s}{\leftarrow} \mathsf{Perm}(\mathcal{M})$
 - In another, $k \stackrel{s}{\leftarrow} \mathcal{K}, \mathfrak{O} = \mathcal{E}(k, \cdot)$
 - The adversary cannot tell in which world he leaves
- Example: \mathcal{E} cannot be \mathbb{F}_2 -linear (or even "close to")

Next week

- Extensions of \mathbb{F}_2
- LFSRs
- MACs

- Knudsen & Robshaw, The Block Cipher Companion
- Daemen & Rijmen, The Design of Rijndael