Introduction to cryptology (GBIN8U16) Password Hashing

Pierre Karpman pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2018-04-05

Password Hashing

^{2018–04–05} 1/23

A simple login/password interaction:

- **1** User U wants to log on system S; sends password p
- System S checks password associated with U in database $D = \{(U_i, p_i)\}$; grants access if equal to p

A simple total break:

- 1 Adversary A steals database D (Quite realistic; happens a lot)
- \Rightarrow Passwords must never be stored *in clear*!

A first attempt (aborted):

- Store p encrypted with, say, CBC-ENC
- U, S Need to store/know the secret key: nothing is solved

A first attempt:

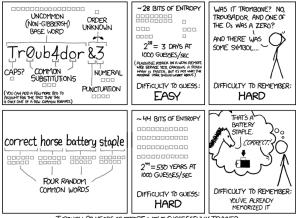
- Store p encrypted with, say, RSA-OAEP
- U, needs to know S's public key
- S has a single secret to store (but always used to decrypt; still bad)

A second atttempt:

- Store hashed passwords $\mathcal{H}(p) \rightsquigarrow D = \{(U_i, \mathcal{H}(p_i))\}$
- > S checks that the received password hashes to the right value
- If \mathcal{H} is preimage-resistant, $\mathcal{H}(p) \not\rightarrow p$?
- Basically sound, but still with some problems!

- ▶ Let $\mathcal{H}: \{0,1\}^* \to \{0,1\}^n$. For any set $\mathcal{S}, \#\mathcal{S} \leq 2^{n/2}, x \in \mathcal{S}$ can be found in time $\langle \#\mathcal{S} \text{ given } \mathcal{H}(x) \text{ (Question: how?)}$
- If $\mathcal{H}(x)$ is used to identify x, any preimage works
- "Inverting" \mathcal{H} takes time $\approx \min(2^n, \#S)$ (Assuming $x \stackrel{\$}{\leftarrow} S$)
- Not a problem of hash functions specifically, just the absence of (other) secret

Password entropy: a global issue



THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

https://xkcd.com/936/

Microsoft's LM hash? (1980's)

- 1 Truncate p to 14 ASCII characters
- 2 Convert it to uppercase
- **3** Split it in two halves p_0 , p_1
- 4 LMHash $(p) = DES(p_0, c) || DES(p_1, c)$ for a fixed constant c
 - \blacktriangleright DES : $\{0,1\}^{56}\times\{0,1\}^{64}\rightarrow\{0,1\}^{64}$ is a block cipher

What's wrong with that?

- Final The two halves of the hash are processed separately
- Only $69^7 \lessapprox 2^{43}$ possible inputs per half
 - Only 2²⁰ seconds on one core of this laptop needed to exhaust them
- Impossible to securely store a strong password

Microsoft's LM hash? (1980's)

- 1 Truncate p to 14 ASCII characters
- 2 Convert it to uppercase
- **3** Split it in two halves p_0 , p_1
- 4 LMHash $(p) = DES(p_0, c) || DES(p_1, c)$ for a fixed constant c
 - ▶ DES : $\{0,1\}^{56} \times \{0,1\}^{64} \rightarrow \{0,1\}^{64}$ is a block cipher

What's wrong with that?

- The two halves of the hash are processed separately
- Only $69^7 \lessapprox 2^{43}$ possible inputs per half
 - \triangleright Only 2²⁰ seconds on one core of this laptop needed to exhaust them
- Impossible to securely store a strong password

- \blacktriangleright A "modern" answer: just take ${\cal H}$ to be, say, SHA3-256
- Problem: multi-target attacks are (still) easy
 - An adversary may want to find one password among N
 - For every candidate p', check if $\mathcal{H}(p') \in D$
 - The work is decreased by a factor $\approx N$
 - N might be large (say, > 1000)

• One counter-measure: use different functions for every user

- Simple to implement: every user U_i selects a large random number r_i ; $D = \{(U_i, r_i, \mathcal{H}(r_i || p_i))\} \leftarrow \text{If } \mathcal{H} \text{ is not SHA3, something different from prefixing might be necessary}$
- One has to check for every candidate p', for every user if p' is the right password

- If a password is "random enough", salted hash is fine
- But most/some might not be that
- Assume that one:
 - ▶ Has 2⁵⁰ password candidates for a user
 - ▶ Can compute 2²³ hashes/core/second
 - Has 128 available cores
 - ▶ ⇒ Only 2^{20} seconds (< two weeks) to find *p* (that's not enough)
- One counter-measure: make hash functions *slower*
 - Not slow enough to hinder the user
 - Slow enough to make exhaustive search too costly

- Instead of computing $\mathcal{H}(r \| p)$ once, iterate many times!
- Example: PBKDF2
 - $h \approx \bigoplus_{i=0}^{c} h_i$; $h_i = \mathcal{H}(h_{i-1} || p)$; $h_0 = r$
 - Choose the iteration count c to be "large enough"
 - Typically $c \approx 1000$
- Say it takes 10ms to hash one password \Rightarrow 35 years on 10 000 cores to try 2⁵⁰ candidates for one user
- One problem:
 - The user *needs* to hash on a regular core
 - An adversary may try hashes on fast dedicated circuits

A reasonable assumption:

- A PBKDF2 hash function can be computed 2²⁰ times faster than on a CPU core, using dedicated hardware with low amortized cost
- ▶ 10ms to hash one password on CPU $\Rightarrow < 2^{-26}$ on efficient hardware $\Rightarrow < 2^{20}$ seconds on 10 machines to try 2^{50} passwords

How to solve this?

- Cannot make the user wait one day to check a password
- So use hashing that's *slow everywhere*

An assumption: memory is slow for everybody

- So use a "memory-hard" hash function that needs a lot of memory to be computed
- A framework: the output must depend on "many" intermediate values, accessed many times → a (quadratic) tradeoff
 - Either store all intermediate values (costs memory)
 - Or recompute them as needed (costs time)
- Only increases memory consumption (not time) of hashing a password for a generic user
- Makes dedicated hardware not more efficient than regular CPU (hopefully)

Scrypt (Percival, 2009), the (very rough) idea:

- Use the password and salt to generate a large buffer
- Access the buffer in a sequential and unpredictible way to generate the output

A bit more precisely:

1
$$h_i = \mathcal{H}(h_{i-1}); h_0 = r || p$$
, for *i* up to $n-1$

2 $s_i = \mathcal{H}(s_{i-1} \oplus h_{s_{i-1} \mod n}), s_0 = \mathcal{H}(h_{n-1}), \text{ for } i \text{ up to } n$

8 Return s_n

The visible intuitive tradeoff from two slides ago:

- Either store all the $h_i \rightsquigarrow$ time = memory $\approx n$ calls to \mathcal{H}
- Either recompute $h_{s_{i-1} \mod n}$ once s_{i-1} is known \sim constant memory, time $\approx n \times n/2$

 \Rightarrow Only a few MB of generated values might be enough to defeat special-purpose hardware

 One can in fact prove that the above tradeoff is roughly optimal (Alwen & al., 2016) HKDF (Boyen, 2007) uses a memory-hard function with an (optionally) *unknown* iteration count

- **I** A user computes an iterated function on the password *p*
- Interrupts the process when wanted; obtains a hash h of p and a verification string v
- 3 The hash and the iteration count can be retrieved from p and v
- The user may tune the iteration count on its own to its requirements
- Without that knowledge, an adversary is less efficient

HKDF: How?

Preparation phase: Input: <i>p</i> , <i>r</i> , <i>t</i>
Output: h, v, r
$\mathbf{I} z = \mathcal{H}(r p)$
2 For $i = 1, \ldots, t \triangleleft t$ may be user-defined
$y_i = z$
4 For $* = 1, \dots, q \triangleleft q$ controls the time/space ratio
5 $j = 1 + (z \mod i)$
$\mathbf{G} \qquad \mathbf{z} = \mathcal{H}(\mathbf{z} \mathbf{y}_j)$
7 Return r; $v = \mathcal{H}(y_1 z)$; $h = \mathcal{H}(z r)$

Extraction phase: Input: <i>p</i> , <i>r</i> , <i>v</i> Output: <i>h</i>
•
$1 z = \mathcal{H}(r p)$
2 For $i = 1,, \infty$
$3 y_i = z$
4 For $* = 1,, q$
5 $j = 1 + (z \mod i)$
$6 \qquad \mathbf{z} = \mathcal{H}(\mathbf{z} \mathbf{y}_j)$
If $(\mathcal{H}(y_1 z) = v)$ Then Break
8 Return $h = \mathcal{H}(z r)$

- Both functions use password-dependent memory accesses
- May leak information about the password
- So (memory-hard) functions with password-independent accesses may sometimes be preferable
- For (some) more on password hashing: https://password-hashing.net/

To finish: something a bit different

It may be useful to have a hash function that:

- Is slow to execute (i.e. it is slow to compute $y \coloneqq \mathcal{H}(x)$ given x)
- ▶ Is fast to verify (i.e. it is fast to check that $y = \mathcal{H}(x)$ given x and y)

An application:

Collaborative random-number generation

Randomness beacon

A *Randomness beacon* is a system that publishes (pseudo-)random numbers at regular interval

Example:

https://beacon.nist.gov/home

Some applications:

- Remote random consensus ("Shall we go to a pizzeria or a crêperie?")
- (Faster) challenge generation in authentication protocols
- Lotteries
- Jury/assembly selection

Collaborative beacons

One can distinguish:

- "Oracle" beacons (have to be trusted)
- "Collaborative" beacons (everyone can contribute)
- A design strategy (Lenstra & Wesolowski, 2015):
 - **I** Use a slow hash function with fast verification that takes wall time $> \Delta$ to be computed (hopefully on the best platform)
 - 2 Gather public seeds from time $t \Delta$ to t
 - 3 At time t, hash all collected seeds, then publish the hash
 - 4 Everyone can efficiently test the result and its dependence on the seeds
 - An adversary does not have time to precompute a hash and insert a seed that biases the result

Sloth: A slow hash function in a nutshell:

- If p ≡ 3 mod 4 is a (large) prime, if x ∈ 𝔽[×]_p is a square mod p, the fastest know way to compute a square root of x is as x^{(p+1)/4}
- ► Exactly one of x or -x is a square ⇒ one can map any number to a well-defined square root
- Computing a square root takes ≈ log(p) more time than "verifying" one
- So (to make things more modular):
 - Compute an iterative chain of square roots
 - Interleaved with, say, block cipher applications to break the algebraic structure

- Sloth is not memory-hard, but CPUs are good at big-number arithmetic
 - Dedicated hardware may not be a threat
 - (Some password-hashing functions are based on the same assumption (Pornin, 2014))
- A Twitter-accessible beacon: https://twitter.com/random_zoo