Crypto Engineering (GBX9SY03)
TP — Generic second preimage attacks on long
messages for narrow-pipe Merkle-Damgard hash
functions

2023-10-17

Grading

This TP is graded as part of the contréle continu. You must send a written report (in
a portable format) detailing your answers to the questions, and the corresponding source
code, wncluding all tests, with compilation and execution instructions by 2023-11-
10T'18:004+-0100) to:

Working in teams of two is allowed (but not mandatory), in which case only one report
needs to be sent, with the name of both students clearly mentioned.

Introduction

The goal of this TP is to implement a generic second preimage attack for long messages for
Merkle-Damgard hash functions, in the specific case where the compression function used
within the hash function follows a so-called Davies-Meyer (henceforth, “DM”) construc-
tion. This is a particular case of the attacks (re-)designed by Kelsey and Schneier [KSO05].
You will have to implement and run the full attack on a toy hash function with 48-bit
hashes based on the SPECK48/96 block cipher [BSS'13]. While this hash function will
obviously be vulnerable to brute-force attacks (and maybe even more), it is simple to
implement and it reasonably behaves like a random function, which is all we need here.

Part one: preparatory work

Download the specifications of SPECK48/96 at and
the tarball at

. This tarball contains the file second_preim_48_fillme.c that already
partially implements some functions, which you will be required to complete.

mailto:pierre.karpman@univ-grenoble-alpes.fr
http://eprint.iacr.org/2013/404
https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_second_preim.tar.bz2
https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_second_preim.tar.bz2

Question 1

Finish to implement the function speck48_96 of the encryption with SPECK48/96, and
verify the correctness of your implementation with the test values provided in [BSS™13,
App. C], by using the (already implemented) function test_vector_okay.

Question 2

Implement the function speck48_96_inv of the decryption by SPECK48/96. Write a test
function int test_sp48_inv(void) that verifies that speck48_96_inv and speck48_96
are inverses of each other.

Question 3

Implement the function cs48_dm that transforms SPECK48/96 into a compression function
using a DM construction with an XOR feedforward, i.e. defining F(h,m) as £(m,h) & h.
Note that for later convenience in the attack functions, the 48-bit input and output of
this function is now stored in the low bits of a single 64-bit word. Write a test function
int test_cs48_dm(void) to check that the result of calling the compression function with
IV 0x010203040506ULL and message {0,1,2,3} is 0x5DFD97183F91ULL.

Question 4

Implement the function get_cs48_dm_fp that returns the unique fixed-point fp of the
function cs48_dm for the message m; that is, compute the unique 48-bit string fp such
that cs48_dm(m,fp) == fp. Write a test function int test_cs48_dm_fp(void).

N.B.: Such a fixed-point is very easy to compute for a DM compression function: all one
needs is h such that E(m,h) dh =h.

Part two: the attack

The main idea of the second-preimage attack that we consider here is that given a (long)
target message, one searches for collisions with one of its intermediate chaining values.

Given an {-block message M = my||...|/my, the computation of H(M) with a narrow-
pipe Merkle-Damgard hash function H with compression function J requires the compu-
tation of £ chaining values h; := F(hi_1, mi) (with hy being the fixed IV of the function).
Assuming first a simplistic function H that does not use any sort of padding, one can
see that an attacker who has found M’ (with a size multiple of the block length) s.t.
H(M') = hy for some 0 < i < ¢ may form the message M” = M/||mi1]|...[/m¢ leading
to hy = H(M), and thus found a second preimage M” for M. The expected number of
tries for finding a collision between an n-bit chaining value with { targets being 2n—1os(0)
this attack is better than a generic search (but still costs at least 2™/2? compression function
calls).

In reality, H will most likely use some form of padding that includes the length of the
message being hashed.* If M and its potential second preimage M’ are not of the same
length, their padding (added after their last message block and before the computation of

*For instance to prevent collisions from DM fixed points.

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_second_preim.pdf

the hash) will be distinct and thus lead to different hashes with overwhelming probability,
thus invalidating the attack.

One way to go around this problem is to first compute an expandable message E
that will allow to “lengthen” M" up to the boundary of the block 1 while preserving the
collision with h;. One may then build M’/ = E||M" which is of the same length as M
and thus has the same padding, resulting in a true second-preimage.

You are required to implement this attack for the hash function hs48, already imple-
mented in the provided file. This function takes messages made of an integral number of
96-bit blocks, each represented as an array uint32_t b[4] where only the 24 lowest bits
of each 32-bit word are set.

Question 1

Implement the function find_exp_mess. This function must return two one-block mes-
sages m1 and m2 such that there exists a value h equal to both cs48_dm(m1l, IV) and
get_cs48_dm_fp(m2). In other words, for any message m made of one copy of m1 fol-
lowed by n >= 1 copies of m2, one has hs48(m,n+1,0,0) == h. Write a test function
int test_em(void) to validate your function.

Give a detailed description of your implementation of find_exp_mess (for instance
describing your choices for the data structures) and evaluate its performance (both theo-
retically and practically).

How to proceed. To answer this question, you are advised to perform a meet-in-the-
mtddle search: compute N possible chaining values for N random first-block messages
ml, and then compute fixed-points for random messages until one of them collides with a
previously obtained chaining value. You may use the pseudo-random number generator
provided in the header file xoshiro.h.

Don’t forget to enable the optimisations of your compiler (for instance using flags
-03 -march=native). With a reasonably good implementation, finding an expandable
message should take significantly less than one minute on average.

Question 2

Implement the function attack. This function must return a second preimage for the
message mess of 2'® blocks generated by the following code:

for (int i = 0; 1 < (1 << 20); i+=4)

{
mess[i + 0] = i;
mess[i + 1] = 0;
mess[i + 2] = 0;
mess[i + 3] = 0;
}

whose hash is equal to 0x7CA651E182DBULL.

fSee also

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_second_preim.pdf
http://xoshiro.di.unimi.it/

Give a detailed description of your implementation and an analysis of its performance
(both theoretical and practical). Be careful to document enough the output of this function
so that it provides all the information needed to characterise the second preimage (you
may for instance freely use the “verbose” option of hs48).

How to proceed. You should first compute an expandable message with associated
fixed-point fp, and then search for a collision block cm s.t. cs48_dm(cm,fp) is equal to
one of the chaining values of mess. Once such a block is found, you need to form the
second preimage message mess2 by expanding the expandable message to an appropriate
number of blocks and suffixing the colliding block and the remaining blocks identical to
the ones of mess. Finally compute the hash of mess2 to validate your attack.

With a reasonably good implementation, finding a full attack should take significantly
less than ten minutes on average.

References

[BSST13] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers,
, IACR Cryptology ePrint Archive 2013 (2013),
404.

[KS05] John Kelsey and Bruce Schneier,
, Advances in Cryptology — EUROCRYPT 2005
(Ronald Cramer, ed.), Lecture Notes in Computer Science, vol. 3494, Springer,
2005, pp. 474-490.

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_second_preim.pdf
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
https://doi.org/10.1007/11426639_28
https://doi.org/10.1007/11426639_28

