Crypto Engineering (GBX9SY03)
TP — Square attack on 3l/2 rounds of the AES block
cipher

2023-10-03

Grading

This TP is graded as part of the contréle continu. You must send a written report (in
a portable format) detailing your answers to the questions, and the corresponding source
code with compilation and execution instructions by Friday in two weeks (2023-10-
13T'18:004-0200) to:

pierre.karpman@univ-grenoble-alpes.fr.

Working in teams of two is allowed (but not mandatory), in which case only one report
needs to be sent, with the name of both students clearly mentioned.

Introduction

The goal of this TP is to implement a simple, yet effective key-recovery attack on a
reduced version of the AES block cipher. This attack (taking the many names of “square”,
“‘saturation” or “integral” attack) is structural, in the sense that it does not depend on
many details of the AES, but rather on its overall structure as a “substitution-permutation
network” (or SPN). In fact, it was first developed for the SQUARE cipher, which is a
predecessor of the AES (Daemen & al., 1997), and later generalized to even wider settings
(Biryukov and Shamir, 2001).

The attack, like many other key-recovery attacks in symmetric-key cryptography, is
first based on a (PRP) distinguisher, i.e. a property that allows to decide if one is inter-
acting with a specific algorithm (e.g. the AES) or a random permutation. In our case,
the distinguisher works on 3 rounds of the AES and consists in the fact that for 256
well-chosen plaintexts po, - - - , 255, we have that for any fixed key k, AES3(k,po) ® -+ @
AES3(k,p2ss) =0, i.e. the XOR of the 256 ciphertexts encrypted by 3-round AES is the
all-zero 128-bit string. As this property is unlikely to hold for a random permutation, we
can use it to distinguish the two cases.

We will use this distinguisher to recover the key for 31/2 rounds of AES (a 1/2 round
is a round without MixColumn, cf. below). The idea to do so is the following:

1. Make queries to the 31/2 oracle that would allow to observe the distinguisher (on 3
rounds), i.e. query AESs:,, with an unknown key on po,--- , pa2ss as above.

mailto:pierre.karpman@univ-grenoble-alpes.fr

https://membres-1jk.imag.fr/Pierre.Karpman/cry_eng2023_tp_aessq.pdf

2. Partially decrypt the oracle answers by 1/2 rounds, by making a guess on part of the
key.

3. If the guess allows to observe the distinguisher on the partially decrypted ciphertexts,
it is assumed to be correct; otherwise another one is made.

AES structure and a 3-round distinguisher

Preliminaries: Iterative block ciphers

Recall that a (binary) block cipher is a mapping £ : {0, 1}* x{0, 1}™ — {0, 1}™ such that for
all fixed k € {0, 1}*, E(k,) is a permutation. Virtually all block ciphers are designed by
iterating some (family of) round function P : [1,7] x {0, 1}* x {0, 1} — {0, 1}™ a certain
number of times. Here 1 is the number of rounds of E, and the P(i,-,-)’s may differ
(usually only slightly) from one round to another. One particular way in which the round
functions may differ is that they often effectively use a different round key, derived from
the original master key of E. Concretely, (iterative) block ciphers use a (possibly trivial)
key schedule o : [[1,7] x {0,1}™ — {0, 1}™, and we may then loosely describe an iterative
block cipher from its key schedule & round functions as E(k,-) = Oi_; P(i,0(i,k),).
Finally, the round functions themselves may in practice be designed as the composition
of some even smaller functions.

The iterative structure of a block cipher allows naturally to define reduced-round
versions, for which one uses fewer than r iterations of the round function. Those are
usually easier to attack (regardless of the security notions), and it is often very informative
to consider how many rounds (in percentage of the total number r) can be attacked
(typically for a given time & query budget).

The AES block cipher

AES is a family of block ciphers with 128-bit (message) blocks and keys of 128, 192 or
256 bits. This TP is about the 128-bit key instance.

For a quick presentation of the AES, we refer to https://membres-1jk.imag.fr/
Pierre.Karpman/cry_eng2023_cm99.pdf. For a (much) more thorough description (in-
cluding discussions of the design rationale and some additional topics on block cipher
design & cryptanalysis), the canonical reference is the book The Design of Rijndael
(Daemen & Rijmen, 2002).

A 3-round distinguisher

We now describe a (PRP) distinguisher for AES reduced to 3 rounds. It is not important
to understand the proof of the distinguisher in order to answer the questions of this TP,
and this section may then be safely skipped, with exception of its last two paragraphs (in
ttalics) which describe the actual distinguisher.

The AES round function is the composition of four functions: AddRoundKey (ARK),
SubBytes (SB), ShiftRows (SR) and MixColumns (MC). The last round omits the Mix-
Column function and is usually counted as a !/2-round (however, this last round does
include an extra ARK at the very end. It can thus be written as ARK o SR o SB o ARK).

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_aessq.pdf
https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_cm99.pdf
https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_cm99.pdf

https://membres-1jk.imag.fr/Pierre.Karpman/cry_eng2023_tp_aessq.pdf

The property which we exploit in the distinguisher derives from the fact that XORing all
the 2™ n-bit values 0, 1,--- ,2™ —1 results in 0. In more details, we use the following facts:

1. We call A the set {0x00, - - - , 0xFF} of all 8-bit values from 0 to 255. If S is a permu-
tation, we have that @, S(x) = Pycrx =0.

2. We consider a set A" of 256 vectors of Fgg for which one (w.l.o.g. the first) coordinate
takes all possible values, and the three others are constant. We write such a set as
(x,c,c,c)t; that is, a coordinate marked c takes the same value in all 256 elements
of A/, and one marked * takes each possible value of Fos ezactly once. Note that the
three positions marked c do not have to take the same constant value. An example
of a set having the property (x,c,c,c)t is {(1,0,1,2)',1 € Fos}.

Now, as the MixColumn matrix M of the AES does not have any zero coeffi-
cient, each coordinate of the elements of the set {M - x, x € A’} takes each pos-
sible value of Fys exactly once, i.e. the output set is of the form (x,x,x%,*)t.
Note that as for the ‘c’ notation above, there is no requirement that all four co-
ordinates of the vectors of this output set be the same. For instance, the set
{(0,0,0,0) YU {(o, att!, a2 xit3)t i =0,---, 254} for « a generator of the mul-
tiplicative group FJs is of the form (x,x, %,%)".

3. We consider a set A" of 256 vectors of Fjs of the form (x,*,*,)!. For any matrix
A = (Ayj) of]1?‘2154) (and thence for M in particular), the sum of all elements of
B:={A-x, x € A"} is the all-zero vector. Indeed, for any of the four coordinates 1,
the sum across all elements of B can be rewritten as:

@ Ajiox @ EB Ai1x @ EB Ajiox @ EB Aj3Xx,
XEA XEA XEA XEA

with all Ay s either zero or invertible, hence the above is equal to 0 0©® 0® 0. We
write this property of the output set B as (b,b,b,b)*.

We now define a A-set as a set of 256 16-byte plaintexts with one byte taking all
possible values (), and the fifteen other being constant (c, or in white in Figure 1).
Thanks to the above facts, we can now graphically follow the propagation of a A-set
over three rounds of the AES, wn Figure 1.*

In words, the sum after 3 rounds of AES of all the 256 ciphertexts whose corre-
sponding plaintexts form a A-set is zero.

Exercise 1: Warming up

Download the AES standard at

https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/
fips-197.pdf

and the tarball

https://membres-1jk.imag.fr/Pierre.Karpman/cry_eng2023_tp_aessq.tar.bz2

*Figure slightly adapted from https://www.iacr.org/authors/tikz/.

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_aessq.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_aessq.tar.bz2
https://www.iacr.org/authors/tikz/

https://membres-1jk.imag.fr/Pierre.Karpman/cry_eng2023_tp_aessq.pdf

*
A-set
* * * *
& SB SR MC |
ARK *
*
* * * * [[x[*
A * SB | % SR * | MC |[%|% |k |[*
ARK |* * * * % [[*
* * * * [[* [*
* [H [* [* * [% [* * [[H [b[b]b[b
A xR [x K] sB [x [k x| sr [*[*[x[x] Mc [b[b]b]b
ARK |*|*|*[* *[x [x| * * [% [b|b|b]|b
HEEE * K [* % * [*[*[x * [* x| * b bbb
bib[b[b
& bib|b|b
ARK |b|b|b]|b
blblb|b

Figure 1: The 3-round Square distinguisher

Q.1 This question s largely independent of the others. Explain the role of the
function xtime in the file aes-128_enc.c, and show that it is correct. Write your own
variant of xtime for a different representation of Fys (for instance using the polynomial
X8 + X6 + X5 + X* + X3 + X + 1, which is irreducible over Fy (XI).

Q.2 Implement the functions prev_aes128_round_key (you may look at the implemen-
tation of next_aes128_round_key for hints). You should verify the correctness of your
implementation by checking that these functions are inverses of each other, and also pos-
sibly by using the test values provided in the standard document (§A.1 and §C.1).

+

A good way to build a keyed function F : {0,1}** x {0,1}™ — {0,1}™ from a block
cipher £ : {0,1} x {0,1}™ — {0,1}™ is to define F'(kqllko,x) as F(ky,x) ® F(ks,x); one
may show that the PRF security of the thusly-defined F' reduces to the PRP security of £
without suffering from a birthday-bound term (see Bellare & al., 1998; Lucks, 2000; and
many others); informally, one then says that this function construction is secure beyond
the birthday bound. Such a keyed function may then for instance be used to encrypt in
CTR mode, or as the basis of a MAC.

Q.3 Implement the above construction with three (full) rounds of AES for £. Why
do you need to take k; # ks for F' not to be trivial? Show that the 3-round square
distinguisher for such an F also works for the corresponding F', and write a test program
to confirm this.

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_aessq.pdf

https://membres-1jk.imag.fr/Pierre.Karpman/cry_eng2023_tp_aessq.pdf

Exercise 2: Key-recovery attack for 31/2-round AES

Implement a key-recovery attack for 31/2-round AES (i.e. four rounds, with the last one
omitting the MixColumn), using the square distinguisher.

Q.1 Implement the entire attack, and test it on randomly generated keys (e.g. obtained
from /dev/urandom). That is, query your reduced AES on a A-set and iteratively find
each byte of the last round key. This can simply be done by guessing the value for each
key byte separately and discarding wrong guesses by partially decrypting and checking
the 3-round distinguisher. However, don’t forget to:

— Filter out false positives (if any) by using a few additional A-sets.

— Invert the key expansion to recover the original master key.

Q.2 Check that changing the representation of Fos as in (Exercice 1, Q.1) leads to a
different cipher, but that the attack still works. Check the same when changing the S-box
used in SubBytes and/or the MDS matrix used in MixColumn. "

Note: The 3-round distinguisher shown in this exercice can be used in a key-recovery
attack up to 6 rounds of AES-128 (out of 10), still exploiting the same kind of process (see
Ferguson & al. (2000) for the original attack and Todo & Aoki (2014) for an alternative
using “FFT” techniques). The cost of this 6-round attack is about 232
and 2°° encryptions, which is expensive but manageable in practice.

chosen plaintexts

fWarning: The attack may actually work (very) badly for some S-boxes and/or matrices that are “too
simple”.

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2023_tp_aessq.pdf

