
Crypto Engineering

Hash functions & MACs

2021-10-01

Exercise 1: Meet-in-the-middle preimage attack on BRSS/PGV-13 +
MD

BRSS/PGV-13 is an alternative to Davies-Meyer, defined as f (h,m) = E(m,h) ⊕ c for a
cipher E and with c a constant. It can be shown in the ideal cipher model that a Merkle-
Damg̊ard function with such a compression function is secure up to the birthday bound
for both collision and preimage attacks (Black & al., 2010).

Q. 1 If E is ideal, what is the cost, given h and t, of finding m such that f (h,m) = t?
Conclude about the preimage security of f itself.

A meet-in-the-middle preimage attack on a function H x,y = F x ◦Gy aims at finding x
and y s.t. H x,y(IV) = t, where t is a given target. It works by splitting the computation
of H into forward computations Gyi(IV) and backward computations F−1x1 (t) for many
candidate values xi, yi.

Q. 2 We assume that F x,Gy,H x,y all behave as random functions and have signature
{0, 1}n → {0, 1}n.

1. What is the probability over y that Gy(IV) = α ∈ {0, 1}n? Does this probability
depend on α?

2. What is the probability over y that Gy(IV) ∈ S ⊆ {0, 1}n, #S = q?

3. How many candidate values xi and yi should (roughly) be selected to minimize the
time cost of the attack?

4. What is the total time and memory cost of the attack (assuming that you can use a
data structure with constant access time)?

Q. 3 Show how to compute a two-block preimage for H with the above compression
function, using a meet-in-the-middle attack.

Q. 3 Give a rough explanation of how the attack of the previous question is prevented
when using a Davies-Meyer compression function.

Exercise 2: SuffixMAC

Let H = {0, 1}∗ → {0, 1}n be a (usual, narrow-pipe) Merkle-Damg̊ard hash function. We
define SuffixMAC : {0, 1}κ × {0, 1}∗ → {0, 1}n associated with H as SuffixMAC(k,m) =
H(m||k).

1

https://membres-ljk.imag.fr/Pierre.Karpman/cry eng2021 td2.pdf

Q. 1

1. What is the generic average complexity of finding a collision (m,m′) for H?

2. Does this complexity change if one requires m and m′ to be of the same length ` > n?

Q. 2 Let (m,m′) be a colliding pair for H where m and m′ have the same length.

1. Give an existential forgery attack for SuffixMAC with query cost 1.

2. What is the total cost of this attack if one has to compute (m,m′)?

3. Is this attack “meaningful” if κ < n/2? What if κ = n?

Q. 3 What comments can you make about instantiating SuffixMAC in the following
ways:

1. H is taken to be SHA-256, κ = 256?

2. H is taken to be SHA-512, κ = 256?

3. H is taken to be SHA-512/256, κ = 256?

Exercise 3: Raw CBC-MAC

Let CBC-ENC(k, IV,m) denote CBC encryption of the message m and initial value IV with
a block cipher E : {0, 1}n×{0, 1}k → {0, 1}n. We define CBC-MAC(k,m) as the last output
block of CBC-ENC(k, 0n,m).

Q. 1 Does the fact that CBC-MAC uses a constant IV 0n in its call to CBC-ENC result in
a security problem?

Q. 2 In this question, for the sake of simplicity, we assume that no padding is used by
CBC-ENC.

Let m1 ∈ {0, 1}n denote a one-block message.

1. Give an explicit expression for τ1 := CBC-MAC(k,m1)

2. Give an explicit expression for τ2 := CBC-MAC(k,m1||(m1 ⊕ τ1))

3. Deduce an existential forgery attack on CBC-MAC. What is its query and time cost?

Q. 3 We now define CBC-MAC′ as CBC-MAC′(k,m) = E(k′, CBC-MAC(k,m)), where k′ is a
key independent from k.

Explain (roughly) why this additional processing prevents the above attack.

2

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2021_td2.pdf

