
Crypto Engineering

Block ciphers & Hash functions 1

2021-09-28

Exercise 1: No questions

Explain why all of the following statements are wrong.

1. It is never possible to attack an ideal block cipher.

2. A block cipher with keys of 512 bits is always secure.

3. There will never be any reason, technologically speaking, to use (block cipher) keys
larger than 128 bits.

4. One should always use (block cipher) keys larger than 128 bits.

5. ∗ IVs of the CBC mode can be generated using rand48()

6. ∗ There is no well-analysed and (as far as we know) secure block cipher with larger key
sizes than the ones found in the AES family.

7. ∗ One can always use a secure block cipher to build a secure hash function.

8. ∗ One should always use the latest-published, most recent block cipher/hash function.

Exercise 2: CBC ciphertext stealing

This exercise presents an elegant technique to avoid increasing the length of the CBC encryp-
tion of a message whose length L is not a multiple of the block size n of the block cipher, as
long as L > n.

Let M = m1|| · · · ||m`−1||m` be a message of length L = (`−1)·n+r, where r = |m`−1| < n.
Recall that the CBC encryption of M with the block cipher E and the key k is C = c0|| · · · ||c`,
where c0 is a random initial value, and ci = E(k,mi ⊕ ci−1) for i > 0.

Q.1 What is the bit length of C, defined above, assuming that m` is first padded to an n-bit
block?

Q.2 Write the decryption equation for one block (that is, explain how to compute mi in
function of ci, k, and possibly additional quantities).

Let us now rewrite the penultimate ciphertext c`−1 = E(k,m`−1⊕ c`−2) as c′`||P , where c′`
is r-bit long. We also introduce m′` = m`||0n−r, that is m` padded with n− r zeros. Finally,
let c′`−1 = E(k,m′` ⊕ (c′`||P)).

Q.3 What is the bit length of C ′ = c0|| · · · ||c`−2||c′`−1||c′`?

1

https://membres-ljk.imag.fr/Pierre.Karpman/cry eng2021 td1.pdf

Q.4 Explain how to recover m` and P from the decryption of c′`−1, and from there m`−1
from the one of c′`.

Exercise 3: An attack on a tweakable block cipher construction

We consider a simple tweakable block cipher construction Ẽ : {0, 1}κ × {0, 1}κ × {0, 1}n →
{0, 1}n that from a (non-tweakable) block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n defines
Ẽ(k, t, ·) = E(k⊕ t, ·). The goal of the exercise is to show the existence of an attack on Ẽ that
runs in time τ (where one time unit corresponds to one evaluation of E±, and memory accesses

are free), makes q queries to the oracle Ẽ
±

(k, ·, ·) (i.e. the adversary may obtain encryption
(resp. decryption) of chosen plaintexts (resp. ciphertexts) under the unknown key k with a
chosen tweak), and recovers k with probability ≈ min(qτ/2κ, 1).

Q.1

1. We first assume that ∀x, E(·, x) is injective. Show then that a collision (on the first
component) between the lists L1 := [(E(x, 0), x) : x� {0, 1}κ] and L2 := [(Ẽ(k, t, 0), t) :
t� {0, 1}κ] reveals k as x⊕ t.

2. Show that this leads to an attack with the same cost as stated above.

3. Do you expect the above assumption to hold if κ = n? What if 2κ = n?

4. How would you adapt the attack if the above assumption didn’t hold?

Exercise 4: An attack on another tweakable block cipher construction (Exam
2019)

The goal of this exercice is to describe an attack by Wang et al. (ASIACRYPT 2016) on a
tweakable block cipher construction “F̃ [2]” due to Mennink (FSE 2015).

We will reuse the tweakable block cipher construction Ẽ from Exercise 3 and admit the
existence of the attack that it describes.

We now define F̃ [2] : {0, 1}κ × {0, 1}κ × {0, 1}n → {0, 1}n from a (non-tweakable) block
cipher E in the following way:

1. y1 := E(k, t)

2. x2 := y1 ⊕ p

3. y2 := E(k ⊕ t, x2)

4. c := F̃ [2](k, t, p) = y1 ⊕ y2

Where y1, x2, y2 are intermediate variables and c is the encryption of p with key k and tweak

t. We also assume adversaries given oracle access to F̃ [2]
±

(k, ·, ·), who can compute E±, and
who wish to recover k.

Q.2 Show that F̃ [2]
−1

(k, 0, 0) = E(k, 0).

Q.3 Show that knowing E(k, 0), an adversary can further recover E(k, t) for any t, by making
the query F̃ [2](k, 0, E(k, 0)⊕ t)

Q.4 Show that it is then possible to obtain E(k⊕t, x) for any x by querying F̃ [2](k, t, E(k, t)⊕
x)

2

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2021_td1.pdf

https://membres-ljk.imag.fr/Pierre.Karpman/cry eng2021 td1.pdf

Q.5 Show how the results of Questions 2 ∼ 4 and the existence of an attack on Ẽ (that
can be treated as a black box) leads to an attack on F̃ [2]. Conclude by explaining how it is
possible to recover the key of F̃ [2] with probability ≈ 1 with an attack that takes time 2κ/2.

Exercise 5: Davies-Meyer fixed-points

In this exercise, we will see one reason why Merkle-Damg̊ard strengthening (adding the length
of a message in its padding) is necessary in some practical hash function constructions.

We recall that a compression function f : {0, 1}n × {0, 1}b → {0, 1}n can be built from
a block cipher E : {0, 1}b × {0, 1}n → {0, 1}n using the “Davies-Meyer” construction as
f (h,m) = E(m,h)⊕ h.∗

Q.1 Considering the feed-forward structure of Davies-Meyer, under what conditions would
you obtain a fixed-point for such a compression function? (That is, a pair (h,m) s.t. f (h,m) =
h.)

Q.2 Show how to compute the (unique) fixed-point of f (·,m) for a fixed m. Given h, is it
easy to find m such that it is a fixed-point, if E is an ideal block cipher?

Q.3 A semi-freestart collision attack for a Merkle-Damg̊ard hash function H is a triple
(h,m,m′) s.t. Hh(m) = Hh(m′), where Hh denotes the function H with its original IV
replaced by h. Show how to use a fixed-point to efficiently mount such an attack for Davies-
Meyer + Merkle-Damg̊ard, when strengthening is not used.

Note: Fixed-points of the compression function can be useful to create the expandable mes-
sages used in second preimage attacks on Merkle-Damg̊ard.

∗Here, the feedforward uses bitwise XOR, but alternatives exist.

3

https://membres-ljk.imag.fr/Pierre.Karpman/cry_eng2021_td1.pdf

