Crypto Engineering Block ciphers & Hash functions 1

2021-09-28

Exercise 1: No questions

Explain why all of the following statements are wrong.

- 1. It is never possible to attack an ideal block cipher.
- 2. A block cipher with keys of 512 bits is always secure.
- 3. There will never be any reason, technologically speaking, to use (block cipher) keys larger than 128 bits.
- 4. One should always use (block cipher) keys larger than 128 bits.
- 5. * IVs of the CBC mode can be generated using rand48()
- 6. * There is no well-analysed and (as far as we know) secure block cipher with larger key sizes than the ones found in the AES family.
- 7. * One can always use a secure block cipher to build a secure hash function.
- 8. * One should always use the latest-published, most recent block cipher/hash function.

Exercise 2: CBC ciphertext stealing

This exercise presents an elegant technique to avoid increasing the length of the CBC encryption of a message whose length L is not a multiple of the block size n of the block cipher, as long as L > n.

Let $M = m_1 || \cdots || m_{\ell-1} || m_\ell$ be a message of length $L = (\ell-1) \cdot n + r$, where $r = |m_{\ell-1}| < n$. Recall that the CBC encryption of M with the block cipher \mathcal{E} and the key k is $C = c_0 || \cdots || c_\ell$, where c_0 is a random initial value, and $c_i = \mathcal{E}(k, m_i \oplus c_{i-1})$ for i > 0.

Q.1 What is the bit length of C, defined above, assuming that m_{ℓ} is first padded to an *n*-bit block?

Q.2 Write the decryption equation for one block (that is, explain how to compute m_i in function of c_i , k, and possibly additional quantities).

Let us now rewrite the penultimate ciphertext $c_{\ell-1} = \mathcal{E}(k, m_{\ell-1} \oplus c_{\ell-2})$ as $c'_{\ell}||P$, where c'_{ℓ} is *r*-bit long. We also introduce $m'_{\ell} = m_{\ell}||0^{n-r}$, that is m_{ℓ} padded with n-r zeros. Finally, let $c'_{\ell-1} = \mathcal{E}(k, m'_{\ell} \oplus (c'_{\ell}||P))$.

Q.3 What is the bit length of $C' = c_0 || \cdots || c_{\ell-2} || c'_{\ell-1} || c'_{\ell}$?

Q.4 Explain how to recover m_{ℓ} and P from the decryption of $c'_{\ell-1}$, and from there $m_{\ell-1}$ from the one of c'_{ℓ} .

Exercise 3: An attack on a tweakable block cipher construction

We consider a simple tweakable block cipher construction $\widetilde{\mathcal{E}} : \{0,1\}^{\kappa} \times \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}$ that from a (non-tweakable) block cipher $\mathcal{E} : \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}$ defines $\widetilde{\mathcal{E}}(k,t,\cdot) = \mathcal{E}(k \oplus t,\cdot)$. The goal of the exercise is to show the existence of an attack on $\widetilde{\mathcal{E}}$ that runs in time τ (where one time unit corresponds to one evaluation of \mathcal{E}^{\pm} , and memory accesses are free), makes q queries to the oracle $\widetilde{\mathcal{E}}^{\pm}(k,\cdot,\cdot)$ (i.e. the adversary may obtain encryption (resp. decryption) of chosen plaintexts (resp. ciphertexts) under the unknown key k with a chosen tweak), and recovers k with probability $\approx \min(q\tau/2^{\kappa}, 1)$.

Q.1

- 1. We first assume that $\forall x, \mathcal{E}(\cdot, x)$ is injective. Show then that a collision (on the first component) between the lists $L_1 := [(\mathcal{E}(x, 0), x) : x \leftarrow \{0, 1\}^{\kappa}]$ and $L_2 := [(\mathcal{E}(k, t, 0), t) : t \leftarrow \{0, 1\}^{\kappa}]$ reveals k as $x \oplus t$.
- 2. Show that this leads to an attack with the same cost as stated above.
- 3. Do you expect the above assumption to hold if $\kappa = n$? What if $2\kappa = n$?
- 4. How would you adapt the attack if the above assumption didn't hold?

Exercise 4: An attack on another tweakable block cipher construction (*Exam* 2019)

The goal of this exercice is to describe an attack by Wang et al. (ASIACRYPT 2016) on a tweakable block cipher construction " $\tilde{\mathcal{F}}[2]$ " due to Mennink (FSE 2015).

We will reuse the tweakable block cipher construction $\tilde{\mathcal{E}}$ from *Exercise* 3 and admit the existence of the attack that it describes.

We now define $\widetilde{\mathcal{F}}[2]: \{0,1\}^{\kappa} \times \{0,1\}^{\kappa} \times \{0,1\}^{n} \to \{0,1\}^{n}$ from a (non-tweakable) block cipher \mathcal{E} in the following way:

- 1. $y_1 := \mathcal{E}(k, t)$
- 2. $x_2 := y_1 \oplus p$
- 3. $y_2 := \mathcal{E}(k \oplus t, x_2)$

4.
$$c := \mathcal{F}[2](k,t,p) = y_1 \oplus y_2$$

Where y_1, x_2, y_2 are intermediate variables and c is the encryption of p with key k and tweak t. We also assume adversaries given oracle access to $\widetilde{\mathcal{F}}[2]^{\pm}(k, \cdot, \cdot)$, who can compute \mathcal{E}^{\pm} , and who wish to recover k.

Q.2 Show that $\widetilde{\mathcal{F}}[2]^{-1}(k,0,0) = \mathcal{E}(k,0).$

Q.3 Show that knowing $\mathcal{E}(k, 0)$, an adversary can further recover $\mathcal{E}(k, t)$ for any t, by making the query $\widetilde{\mathcal{F}}[2](k, 0, \mathcal{E}(k, 0) \oplus t)$

Q.4 Show that it is then possible to obtain $\mathcal{E}(k \oplus t, x)$ for any x by querying $\widetilde{\mathcal{F}}[2](k, t, \mathcal{E}(k, t) \oplus x)$

Q.5 Show how the results of Questions $2 \sim 4$ and the existence of an attack on $\widetilde{\mathcal{E}}$ (that can be treated as a black box) leads to an attack on $\widetilde{\mathcal{F}}[2]$. Conclude by explaining how it is possible to recover the key of $\widetilde{\mathcal{F}}[2]$ with probability ≈ 1 with an attack that takes time $2^{\kappa/2}$.

Exercise 5: Davies-Meyer fixed-points

In this exercise, we will see one reason why *Merkle-Damgård strengthening* (adding the length of a message in its padding) is necessary in some practical hash function constructions.

We recall that a compression function $f : \{0,1\}^n \times \{0,1\}^b \to \{0,1\}^n$ can be built from a block cipher $\mathcal{E} : \{0,1\}^b \times \{0,1\}^n \to \{0,1\}^n$ using the "Davies-Meyer" construction as $f(h,m) = \mathcal{E}(m,h) \oplus h$.*

Q.1 Considering the feed-forward structure of Davies-Meyer, under what conditions would you obtain a fixed-point for such a compression function? (That is, a pair (h, m) s.t. f(h, m) = h.)

Q.2 Show how to compute the (unique) fixed-point of $f(\cdot, m)$ for a fixed m. Given h, is it easy to find m such that it is a fixed-point, if \mathcal{E} is an ideal block cipher?

Q.3 A semi-freestart collision attack for a Merkle-Damgård hash function \mathcal{H} is a triple (h, m, m') s.t. $\mathcal{H}_h(m) = \mathcal{H}_h(m')$, where \mathcal{H}_h denotes the function \mathcal{H} with its original IV replaced by h. Show how to use a fixed-point to efficiently mount such an attack for Davies-Meyer + Merkle-Damgård, when strengthening is not used.

Note: Fixed-points of the compression function can be useful to create the *expandable messages* used in second preimage attacks on Merkle-Damgård.

^{*}Here, the feedforward uses bitwise XOR, but alternatives exist.