Crypto Engineering
 Discrete probability

2021-09-23

Exercise 1: (multi-)collisions

In all of this exercise we let \mathcal{S} be an arbitrary finite set of size N, and we denote by $X \leftrightarrow \mathcal{S}$ the process of drawing X from \mathcal{S} uniformly at random, and independently of any other process.

Let $X \nleftarrow \mathcal{S}, Y \nleftarrow \mathcal{S}, Z \nleftarrow \mathcal{S}$.

1. Compute $\operatorname{Pr}[(X=x) \wedge(Y=y)]$ for any $x, y \in \mathcal{S}$.
2. Compute $\operatorname{Pr}[X=Y]$.
3. Compute $\operatorname{Pr}[X=Y=Z]$.

Exercise 2: (non-)uniform masks

Let X and Y be two independent random variables drawn from \mathbb{F}_{2} with a uniform law for X and an unknown arbitrary law for Y.

1. What is the distribution of $X+Y$? (That is, compute $\operatorname{Pr}[X+Y=0]$)

We now draw X and Y independently from a finite group $(\mathbb{G},+)$ of size N.
2. What is (again) the distribution of $X+Y$? (Note that the distribution of $X+Y$ is given here by the discrete convolution of the distributions of X and Y).

Remark. The result shown in those two questions is essential in cryptography, and is used to justify the security of many constructions.

We go back to X and Y being drawn independently over \mathbb{F}_{2}, but consider this time arbitrary laws for both of them. We write c_{X} the correlation bias of X defined as $c_{X}=$ $|2 \operatorname{Pr}[X=0]-1|$, and the same for c_{Y}.
3. Compute c_{X+Y}, the correlation bias of $X+Y$.
4. By induction, give a formula for the correlation bias of the sum $X_{1}+\cdots+X_{N}$ of N independent variables of correlation biases c_{1}, \ldots, c_{N}.

Remark. This last result is known in (symmetric) cryptography as the piling-up lemma.

Exercise 3: For my birthday I got a coupon for a pair of socks

Let again \mathcal{S} be an arbitrary finite set of size N, which we sample repeatedly by drawing X_{1}, \ldots, X_{k} uniformly and independently.

Figure 1: The coupon collector's problem: a Calvin \& Hobbes illustration
Q. 1 (Pigeonhole principle, or lemme des chaussettes): How many samples are necessary to ensure that $\exists i, j \neq i$ s.t. $X_{i}=X_{j}$ with probability 1?
Q. 2 (Birthday paradox): How many samples are approximately needed to ensure that $\exists i, j \neq i$ s.t. $X_{i}=X_{j}$ with "high" probability (e.g. constant in function of N)?

Hint: You are not required to show this rigorously. You may also consider the probability that two lists L_{1} and L_{2} of elements of \mathcal{S} contain a common one in function of their size, assuming independence of some well-chosen events.
Q. 3 (Coupon collector's problem, cf. Figure 1): How many samples are approximately needed to ensure that $\forall \alpha \in \mathcal{S}, \exists i$ s.t. $X_{i}=\alpha$?

Hint: Consider the complementary event and use the approximation (for "large" x) $\left(1-\frac{1}{x}\right)^{x} \approx e^{-1}$ and the union bound. Alternatively use the linearity of expectations and the fact that the expected number of drawings needed to pick a new coupon after k have been collected is $\left(\frac{n-k}{n}\right)^{-1}$.

Exercise 4: (close-to) uniform permutations *

We consider the following algorithm to generate a random permutation of $\llbracket 1, N \rrbracket$ (or more generally, of N arbitrary elements): 1) build a list of N pairs (r_{i}, i, where $r_{i} \leftarrow \mathbb{Z} / q \mathbb{Z}$; 2) sort the list according to the first element of the pairs; 3) return the list of the second element of the pairs in the sorted order.
Q. 1 : Compute the number of sorted lists of N elements of $\mathbb{Z} / q \mathbb{Z}$.

Hint: Map all such possible lists to paths from $(0,1)$ to (N, q) in the 2-dimensional discrete grid, where only horizontal and vertical steps are allowed.
Q. 2 :

1. For every possible permutation generated by the algorithm, compute a non-trivial upper-bound for the number of drawings for $\left(r_{1}, \ldots, r_{N}\right)$ that lead to it.
2. What is then an upper-bound for the probability of occurence of any permutation?
3. Express this probability as δ / N ! for δ of the form $\prod_{i=1}^{N-1}\left(1+x_{i} / q\right)$.
4. For a fixed N, give an approximative criterion on q for δ to be close to 1 (for instance using the approximation (for "large" $x)\left(1+\frac{1}{x}\right)^{x} \approx e$).

We now consider a variant of the algorithm, where one is interested in drawing a random combination of weight w. This is done as follows: 1) build a list of N pairs
$\left(r_{i}, i<=\mathrm{w} ? 1: 0\right)$, where $\left.r_{i} \nleftarrow \mathbb{Z} / q \mathbb{Z} ; 2\right)$ sort the list according to the first element of the pairs; 3) return the list of the second element of the pairs in the sorted order.

Q. 3 :

1. For every possible combination generated by the algorithm, compute a non-trivial upper-bound for the number of drawings for $\left(r_{1}, \ldots, r_{N}\right)$ that lead to it.
2. What is then an upper-bound for the probability of occurence of any combination?
3. Express this probability as $\delta /\binom{N}{w}$ for δ of the form $\prod_{i=1}^{N-1}\left(1+x_{i} / q\right)$.
4. How could this have been found directly by using the result of Q.2?

Remark. Generating (close-to) uniform permutations and combinations is an important step in code- and lattice-based cryptosystems. The quantity δ computed above corresponds to the divergence between the uniform distribution and the one obtained with the above algorithm. This exercise is based on: https://ntruprime.cr.yp.to/ divergence-20180430.pdf.

