Crypto Engineering Finite fields extensions

2021-09-22

Exercise 1: AES field

Most of the elementary operations used in the definition of the AES block cipher are defined over \mathbb{F}_{2^8} , represented as $\mathbb{F}_2[X]/\langle X^8 + X^4 + X^3 + X + 1 \rangle$.

We define the following C function:

Q.1: What does this function do?

Q.2: Write your own variant of **xtime** for a different representation of \mathbb{F}_{2^8} (for instance using the polynomial $X^8 + X^6 + X^5 + X^4 + X^3 + X + 1$, which is irreducible over $\mathbb{F}_2[X]$).

Q.3: Write a multiplication function mul8 that computes the product of two elements of \mathbb{F}_{2^8} in the AES representation.

Exercise 2: Multiplication by a constant in \mathbb{F}_{2^8}

Let $P = \sum_{i=0}^{7} p_i X^i$ be an arbitrary polynomial of $\mathbb{F}_2[X]$ of degree < 8.

Q.1: Compute (symbolically) the result of the multiplication of P by X modulo $Q := X^8 + X^4 + X^3 + X + 1$.

Q.2: Considering that P can be embedded into \mathbb{F}_2^8 as the row vector $(p_0 \cdots p_7)$, write the multiplication of the previous question as a vector-matrix product and give the matrix M_{0x2} of the right multiplication by X modulo Q.

Remark. M_{0x2} is called the *companion matrix* of Q

Q.3: Compute $M_{0x4} := M_{0x2}^2$ and $M_{0x8} := M_{0x2}^3$. What is M_{0xB} , the matrix of the right multiplication by $X^3 + X + 1$ modulo Q?

Q.4: Explain how one could compute the inverse of an element in \mathbb{F}_{2^8} using the above representation. Do it for X^2 (either by hand or using sage).