
MACs, AE 2021–10–01 1/28

Crypto Engineering ’21
]

Message Authentication Codes, Authenticated
Encryption

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://membres-ljk.imag.fr/Pierre.Karpman/tea.html

2021–10–01

pierre.karpman@univ-grenoble-alpes.fr
https://membres-ljk.imag.fr/Pierre.Karpman/tea.html


MACs, AE 2021–10–01 2/28

Authentication (in crypto)

Crypto is not all about encrypting. One may also want to:

▸ Get access to a building/car/spaceship

▸ Electronically sign a contract/software/Git repository

▸ Detect tampering on a message

▸ Detect “identity theft”

▸ Etc.

⇒ domain of digital signatures and/or message authentication
codes (MACs)



MACs, AE 2021–10–01 3/28

A major rule

In the case of a symmetric channel with potentially active
adversaries (e.g. on a network):

▸ It may be fine to only authenticate

▸ It is never okay to only encrypt

⇒ “Authenticated encryption” (This is hard to do properly.)



MACs, AE 2021–10–01 4/28

Today: MACs (symmetric authentication)

Message authentication code (MAC)

A MAC is a mapping M ∶ K(×N ) ×X → T that maps a key,
message (and possibly a (random) nonce) to a tag.

▸ K is for instance {0,1}128 (key space, secret)

▸ N is for instance {0,1}64 (“nonce” space, public, either
“random” or not)

▸ X is for instance ⋃`<264{0,1}` (message space)

▸ T is for instance {0,1}256 (“tag” space)

⇒ The tag is a “link” between a message and a key

▸ Note: MACs are not the only way to provide authentication



MACs, AE 2021–10–01 5/28

MACs: what do we want?

Given a MAC M(k, ⋅) with an unknown key, it should be hard to:

▸ Given m, find t s.t. M(k ,m) = t (Universal forgery)

▸ Find m, t s.t. M(k ,m) = t (Existential forgery)

▸ (Of course, retrieving k leads to those)

UF: ability to forge a tag for any message

EF: ability to forge a tag for some messages

UF ⇒ EF



MACs, AE 2021–10–01 6/28

MACs: really, what do we want?

More generally, we want M(k , ⋅) to be like a “variable input-length
(pseudo-) random function”
↝ (VIL-) PRF security:

▸ An adversary has access to an oracle O
▸ In one world, O↞ Func(X ,T )

▸ In another, k ↞ K, O =M(k , ⋅)

▸ The adversary cannot tell in which world he lives

Where Func(X ,T ) are the functions from the message to the tag
space
↝ Define AdvPRF in the same way as AdvPRP

VIL-PRF ⇒ MAC, but the converse is not true (Exercise: can you
show why?)



MACs, AE 2021–10–01 7/28

So, how to build a MAC?

▸ From scratch

▸ Using a block cipher in a “MAC mode”

▸ Ditto, with a hash function

▸ Using a “polynomial” hash function

▸ Etc.



MACs, AE 2021–10–01 8/28

MACs from block ciphers: CBC-MAC example

Observation:

▸ The last block of CBC-ENC(m) “strongly depends” on the
entire message

▸ ⇒ Take MAC(m) = LastBlockOf(CBC-ENC(m))

▸ Not quite secure as is, but overall a sound idea

Advantage:

▸ “Only” need a block cipher

Disadvantage:

▸ Not the fastest approach



MACs, AE 2021–10–01 9/28

MACs from hash functions 1

If H ∶ {0,1}∗ → {0,1}n is a hash function, one may define:

▸ PrefixMACH ∶ {0,1}κ × {0,1}∗ → {0,1}n as
PrefixMACH(k,m) =H(k ∣∣m)

▸ SuffixMACH ∶ {0,1}κ × {0,1}∗ → {0,1}n as
SuffixMACH(k,m) =H(m∣∣k)

▸ (Note that PrefixMACH ≈ SuffixMACH◁ , where H◁ is H
“reversed”)

These constructions are fine generically but may be weak for some
specific hash functions



MACs, AE 2021–10–01 10/28

Length-extension attack for PrefixMAC

Let H be a (narrow-pipe) Merkle-Damg̊ard hash function

▸ Let h =H(m) for some m

▸ Then H(m∣∣pad(m)∣∣m′
) =Hh(m

′
)

What consequence for the security of PrefixMACH?

▸ Assume an adversary knows m, t = PrefixMACH(k,m) and
κ = ∣k ∣

▸ Then t ′ =H′
t(m

′
) is a valid tag under k for m∣∣pad(m)∣∣m′

▸ (H′ is H with an appropriately modified padding)

⇒ Existential forgeries are trivial!
(NB: Problems also exist for SuffixMACH (cf. TD))
(NB: Similar attacks apply to raw CBC-MAC from two slides ago)



MACs, AE 2021–10–01 11/28

MACs from hash functions 2

How to defend against the previous attack?

▸ Use a better H framework, e.g. a wide-pipe Merkle-Damg̊ard
hash function (e.g. SHA-512/256) or a sponge (e.g. SHA-3)

▸ Use a Sandwich MAC construction (e.g. HMAC,
SandwichMAC, ...)

HMAC (Bellare et al., 1996):

▸ Let H be a hash function with b-bit blocks, pad a function
that pads to b bits with zeroes, opad = 0x36b/8,
ipad = 0x5Cb/8

▸ Then
HMACH(k ,m) =H(pad(k)⊕ opad∣∣H(pad(k)⊕ ipad∣∣m))



MACs, AE 2021–10–01 12/28

HMAC facts

▸ HMAC is secure up to the birthday bound (of its hash function)

▸ It only needs black-box calls to a hash function ⇒ simple to
implement (if one has internal access to the hash function,
the NMAC variant is slightly more efficient)

▸ It is popular (widespread use in e.g. TLS)

▸ It is overkill if H is e.g. wide-pipe

▸ Some variants exist, some being more efficient



MACs, AE 2021–10–01 13/28

Block cipher v. Hash-based MACs

Block cipher and Hash-based MACs both use a black box to build
a MAC, but

▸ Block cipher block sizes are usually “small” (e.g. 64/128 bits)
↝ somewhat limited generic security

▸ Hash functions are more efficient at processing large amounts
of data

⇒ Hash-based MACs tend to be used more than block
cipher-based

▸ But both loose in speed against polynomial MACs (e.g.
VMAC) or dedicated constructions (e.g. PelicanMAC)



MACs, AE 2021–10–01 14/28

Polynomials

“Polynomials = vectors”

Let m = (m0 m1 . . . mn−1) be a vector of Kn, one can

interpret it as M = m0 +m1X + . . . +mn−1X n−1, a degree-(n − 1)
polynomial of K[X ].

Polynomial evaluation

Let M ∈ K[X ] be a degree-(n − 1) polynomial, the evaluation of M
on an element of K is given by the map
eval(M, ⋅) ∶ x ↦ m0 +m1x + . . . +mn−1xn.



MACs, AE 2021–10–01 15/28

Polynomial hash functions

Polynomial hash function

Let m ∈ Kn be a “message”. The “hash” of
m ≡M = m0X +m1X

2
+ . . . ∈ K[X ] for the function Hx is given by

eval(M, x). (We want a degree-n polynomial here, for the
evaluation to “mix” m0 with the key)

Some properties:
Hx is linear (over K)

▸ Hx(a + b) =Hx(a) +Hx(b)

∀a,b ≠ a ∈ Kn,

▸ Pr[Hx(b) =Hx(a) ∶ x ↞ K]

▸ = Pr[Hx(b − a) = 0 ∶ x ↞ K]

▸ = Pr[eval(B −A, x) = 0 ∶ x ↞ K] ≤ deg(B −A)/#K ≤ n/#K



MACs, AE 2021–10–01 16/28

How’s that useful?

W.h.p., ≠ m⇒≠Hx(m)

▸ E.g. take #K ≈ 2128, n = 232, the “collision probability” (over
a random key) between two messages is ≤ 2−96=32−128

▸ This is “optimum”

Problem: for a MAC, linearity is a weakness!

▸ One way to solve this: encrypt the result of the hash with a
(block) cipher!



MACs, AE 2021–10–01 17/28

Polynomial MACs

The Nat MAC

Let H ∶ K ×X → Y be a polynomial hash function family,
Ẽ ∶ K

′
× T ×Y → Y be a tweakable block cipher. The MAC

M ∶ K ×K
′
× T ×X → Y is defined as

M(k , k ′, t,m) = Ẽ(k ′, t,Hk(m)).

Advantage of polynomial MACs:

▸ Fast
▸ Good and “simple” security

▸ But still rely on block ciphers and friends (for the
post-processing)!

Examples: UMAC; VMAC; Poly1305-AES; NaT, NaK, HaT, HaK
Remark: Historically, most polynomial MACs use encryption with
a stream cipher. This makes them more vulnerable if the key is
reused.



MACs, AE 2021–10–01 18/28

Polynomial Hash functions: implementation

How do you implement eval(M, k) efficiently? A possibility:

▸ Use Horner’s rule:
m0k +m1k

2
+ . . . = k × (m0 + k × (m1 + k × (. . .

▸ So only need an efficient multiplication by the constant k :

// assuming a field of characteristic two

res = mulK(m[n-1]);

for (int i = n-2; i >= 0; i--)

res = mulK(m[i] ^ res);

▸ In practice we don’t care what message block is what
coefficient ↝ start the loop from zero



MACs, AE 2021–10–01 19/28

Polynomial Hash functions: field choice

How do you choose K, and how do you implement mulK then?

▸ Prime field option, e.g. F2130−5 ↝ use floating-point
arithmetic. Good in software. Used in Poly1305 (Bernstein,
2005)

▸ Binary field option, e.g. F2128 ↝ use a precomputed matrix of
multiplication, or pclmulqdq-like instructions.
Hardware-friendly, okay in software. Can also use various
techniques from the algebraic computation folks. Used in
GCM (McGrew & Viega, 2005)

▸ Don’t use a single field but a multi-stage strategy, e.g. VMAC
(Krovetz, 2006). Extremely fast in software. (In fact VMAC
also relies on inner-product H.F. in addition to polynomial
ones)



MACs, AE 2021–10–01 20/28

Introducing Authenticated-Encryption

The “modern” view:
If you must never encrypt w/o authentication, why separating the
two? ⇒ Authenticated-Encryption

▸ Maybe more efficient (less redundancy)?

▸ Maybe more secure (no careless combinations)?

▸ Maybe more complex

↝ AEAD (Authenticated-Encryption with Associated Data)



MACs, AE 2021–10–01 21/28

AEAD

AEAD

An AEAD scheme is a pair of mappings (E ,D) with:
E ∶ K ×N ×A ×X → C

D ∶ K × C → X ∪ {�}

▸ E encrypts a message from X with a key and a nonce, and
authenticates it together with associated data from A

▸ D decrypts a ciphertext and returns the message if
authentication is successful, or � (“bottom”) otherwise

▸ Security is typically analysed w.r.t. IND-CPA (for
confidentiality) and INT-CTXT (for integrity)



MACs, AE 2021–10–01 22/28

AEAD designs

An AEAD scheme can be built in many ways:

▸ By combining a BC mode w/ a MAC (e.g. GCM: CTR mode
+ a polynomial MAC)

▸ As a single BC mode (e.g. OCB)

▸ From a permutation/sponge consruction (e.g. Keyak)

▸ From a hash function (e.g. OMD)

▸ From a variable input-length wide-block block cipher (e.g.
AEZ)

▸ Etc.



MACs, AE 2021–10–01 23/28

AEAD: A quick hash function example

Figure: The p-OMD mode (excerpt; source: p-OMD specifications)

pure Offset Merkle-Damg̊ard (Reyhanitabar et al., 2015), based on
a keyed hash function (e.g. SHA-256 w/ semi-secret message)



MACs, AE 2021–10–01 24/28

AEAD: A quick VIL-WBC idea

If E ∶ K × {0,1}n → {0,1}n is a block cipher, one can encrypt and
authenticate any message m of fixed length b < n by:

▸ Computing c = E(k,m∣∣0n−b ∣∣r)
▸ Decrypting c to m iff. E−1(k, c) = m∣∣0n−b ∣∣∗

If E is a “good” SPRP (Q: why isn’t PRP enough here?), it is
“hard” for an adversary to forge ĉ s.t. E−1(ĉ) has n − b zeroes at
specific positions (roughly: success prob. ≈ 2b−n)
↝ Good paradigm, but very limited if E has typical block size
n ≤ 256



MACs, AE 2021–10–01 25/28

VIL-WBC

(VIL)-[W]BC

A Variable input-length wide block cipher is a family W = {E
`
} of

mappings E` ∶ K ×X` → X` s.t. for all `, E` is a block cipher, where
` ∈ S ⊆ N

▸ One can for instance take X` = {0,1}`, ` ∈ [27,264]

▸ The SPRP security of W is defined as the min` SPRP security
of E`

▸ �The notion of VIL-WBC is (different and in some way)
stronger than IND-CPA/CCA symmetric encryption ‽
▸ Exercise: Why isn’t encryption with CBC mode w/ a fixed IV a

good VIL-WBC?



MACs, AE 2021–10–01 26/28

VIL-WBC constructions

Some various strategies have been proposed to build VIL-WBC

▸ Sequential two-pass (e.g. CBC-MAC feeding CTR, Bellare
and Rogaway, 1999; CBC forward and backward, Houley;
Matyas, 1999)

▸ Wide Feistel (e.g. Naor and Reingold, 1997 ↝ Mr Monster
Burrito, Bertoni et al., 2014, and several others)

▸ Parallel Feistel (e.g. AEZ, Hoang et al., 2014)

Maybe not the easiest/fastest way, but conceptually beautiful



MACs, AE 2021–10–01 27/28

Conclusion

▸ Authentication is essential

▸ Most of the time, both encryption and authentication are
needed

▸ The “modern” way: do both at the same time

▸ Still an active research topic (cf. the perpetual CAESAR
competition ↝
https://competitions.cr.yp.to/caesar.html)

https://competitions.cr.yp.to/caesar.html


MACs, AE 2021–10–01 28/28

Appendix: a list of existing MACs

AMAC, BMAC, CMAC, DMAC, EMAC, FMAC, GMAC, HMAC,
IMAC, JMAC, KMAC, LMAC, MMAC, NMAC, OMAC, PMAC,
QMAC, RMAC, SMAC, TMAC, UMAC, VMAC, WMAC, XMAC,
YMAC, ZMAC, PelicanMAC, SandwichMAC (see Karpman &
Mennink, CRYPTO RUMP 2017 for a review)


