
Crypto Engineering (GBX9SY03)

TP — Square attack on 31/2 rounds of AES

2020-10-15

Grading

This TP is graded as part of the contrôle continu. You must send a written report (in
a portable format) detailing your answers to the questions, and the corresponding source
code with compilation and execution instructions by 2020-11-06T18:00+0100) to:

pierre.karpman@univ-grenoble-alpes.fr.

Note that given the current sanitary conditions, working in teams is not allowed.

Introduction

The goal of this TP is to implement a simple, yet effective attack on a reduced version
of the AES. This attack (taking the many names of “square”, “‘saturation” or “integral”
attack) is structural, in the sense that it does not depend on many details of the AES, but
rather on its overall SPN structure. In fact, it was first developed for the Square cipher,
which is a predecessor of the AES (Daemen & al., 1997), and later generalized to even
wider settings (Biryukov and Shamir, 2001).

The attack, like many others in symmetric-key cryptography, is based on a distin-
guisher, i.e. a property that allows to decide if one is interacting with a specific algorithm
(e.g. the AES) or a “random” one (e.g. a random permutation). In our case, the distin-
guisher works on 3 rounds of the AES and consists in the fact that for 256 well-chosen
plaintexts p0, . . . , p255, we have that AES3(p0) ⊕ . . . ⊕ AES3(p255) = 0, i.e. the XOR of
the 256 ciphertexts encrypted by 3-round AES is the all-zero value. As this property is
unlikely to hold for a random permutation, we can use it to distinguish the two cases.

We will use this distinguisher to recover the key for 31/2 rounds of AES (a 1/2 round is
a round without MixColumn, cf. below). The idea to do so is the following:

1. Make queries to the 31/2 oracle that would allow to observe the distinguisher (on 3
rounds), i.e. query AES31/2 with an unknown key on p0, . . . , p255 as above.

2. Partially decrypt the oracle answers by 1/2 rounds, by making a guess on part of the
key.

3. If the guess allows to observe the distinguisher on the partially decrypted ciphertexts,
it is assumed to be correct; otherwise another one is made.

1

mailto:pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry eng2020 tp aessq.pdf

AES structure and a 3-round distinguisher

Recall that the AES round function is the composition of four functions: AddRoundKey
(ARK), SubBytes (SB), ShiftRows (SR) and MixColumns (MC). The last round omits
the MixColumn function and will be counted as a 1/2-round (however, this last round does
include an extra ARK at the very end. It can thus be written as ARK ◦ SR ◦ SB ◦ ARK).
The property which we exploit in the distinguisher derives from the fact that XORing all
the 2n n-bit values 0, 1, . . . , 2n− 1 results in 0. In more details, we use the following facts:

1. We call λ the set {0x00, . . . , 0xFF} of all 8-bit values from 0 to 255. If S is a
permutation, we have that

⊕
x∈λ S(x) =

⊕
x∈λ x = 0.

2. We consider a set λ′ of 256 vectors of F4
28 for which one (w.l.o.g. the first) coordinate

takes all possible values, and the three others are constant. We write such a set as
(?, c, c, c)t; that is, a coordinate marked c takes the same value in all 256 elements
of λ′, and one marked ? takes each possible value of F28 exactly once. Note that the
three positions marked c do not have to take the same constant value. An example
of a set having the property (?, c, c, c)t is {(i, 0, 1, 2)t, i ∈ F28}
Now, as the MixColumn matrix M of the AES does not have any zero coeffi-
cient, each coordinate of the elements of the set {M · x, x ∈ λ′} takes each
possible value of F28 exactly once, i.e. the output set is of the form (?, ?, ?, ?)t.
Note that as for the “c” notation above, there is no requirement that all four
coordinates of the vectors of this output set be the same. For instance, the set
{(0, 0, 0, 0)t} ∪ {(αi, αi+1, αi+2, αi+3)t, i = 0, . . . , 254} for α a generator of F∗28 is of
the form (?, ?, ?, ?)t.

3. We consider a set λ′′ of 256 vectors of F4
28 of the form (?, ?, ?, ?)t. For any matrix

A = (Ai,j) ofM4(F28) (and thence for M in particular), the sum of all elements of
B := {A · x, x ∈ λ′′} is the all-zero vector. Indeed, for any of the four coordinates
i, the sum across all elements of B can be rewritten as:⊕

x∈λ
Ai,0x⊕

⊕
x∈λ

Ai,1x⊕
⊕
x∈λ

Ai,2x⊕
⊕
x∈λ

Ai,3x,

with all Ai,js either zero or invertible, hence the above is equal to 0⊕ 0⊕ 0⊕ 0. We
write this property of the output set B as ([, [, [, [)t.

We now define a Λ-set as a set of 256 16-byte plaintexts with one byte taking all possible
values (?), and the fifteen other being constant (c, or in white in Figure 1). Thanks to the
above facts, we can now graphically follow the propagation of a Λ-set over three rounds
of the AES, in Figure 1∗.

In words, the sum after 3 rounds of AES of all the 256 ciphertexts whose corresponding
plaintexts form a Λ-set is zero.

Exercice 1: Warming up

Download the AES standard at

https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf

and the tarball

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry eng2020 tp aessq.tar.bz2
∗Figure slightly adapted from https://www.iacr.org/authors/tikz/.

2

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2020_tp_aessq.pdf
https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf
https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2020_tp_aessq.tar.bz2
https://www.iacr.org/authors/tikz/

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry eng2020 tp aessq.pdf

?

Λ-set

ARK

?
SB

?
SR

?
MC

?
?
?
?

ARK

?
?
?
?

SB

?
?
?
?

SR

?
?

?
?

MC

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

ARK

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

SB

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

SR

?
?
?
?

?
?
?
?

?
?
?
?

?
?
?
?

MC

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

ARK

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Figure 1: The 3-round Square distinguisher

Q. 1 This question is largely independent of the others. Explain the role of the function
xtime in the file aes-128 enc.c, and show that it is correct. Write your own variant of
xtime for a different representation of F28 (for instance using the polynomial X8 +X6 +
X5 +X4 +X3 +X + 1, which is irreducible over F2[X]).

Q. 2 Implement the functions prev aes128 round key (you may look at the implemen-
tation of next aes128 round key for hints). Verify the correctness of your implementation
by using the test values provided in the standard document.

]

A good way to build a keyed function F from a block cipher E is to define F(k1||k2, x)
as E(k1, x) ⊕ E(k2, x) (see Bellare & al., 1998; Lucks, 2000; and many others). Such a
keyed function may then for instance be used to encrypt in CTR mode, or as the basis of
a MAC.

Q. 3 Implement the above construction with three (full) rounds of AES for E . Why
do you need to take k1 6= k2 for F not to be trivial? Show that the 3-round square
distinguisher for such an E also works for the corresponding F , and write a test program
to confirm this.

Exercice 2: Key-recovery attack for 31/2-round AES

Implement a key-recovery attack for 31/2-round AES (i.e. four rounds, with the last one
omitting the MixColumn), using the square distinguisher. The steps to do so are the
following.

3

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2020_tp_aessq.pdf

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry eng2020 tp aessq.pdf

Q. 1 Implement the partial decryption by 1/2 round of one state byte, given one byte of
the key.

Q. 2 Implement the entire attack, and test it on randomly generated keys (e.g. obtained
from /dev/urandom). That is, query your reduced AES on a Λ-set and iteratively find
each byte of the last round key. This can simply be done by guessing the value for each
key byte separately and discarding wrong guesses by partially decrypting and checking
the 3-round distinguisher. However, don’t forget to:

— Filter out false positives (if any) by using a few additional Λ-sets.

— Invert the key expansion to recover the original master key.

Q. 3 Check that changing the representation of F28 as in (Exercice 1, Q. 1) leads to a
different cipher, but that the attack still works. Check the same when changing the S-box
used in SubBytes and/or the MDS matrix used in MixColumn.

Note: The 3-round distinguisher shown in this exercice can be used in a key-recovery
attack up to 6 rounds of AES-128, still exploiting the same kind of process (see Ferguson
& al. (2000) for the original attack and Todo & Aoki (2014) for an alternative using FFT
techniques). The complexity of this 6-round attack is about 232 chosen plaintexts and 250

encryptions, which is expensive but manageable in practice.

4

https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2020_tp_aessq.pdf

