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In these exercices, we will study two simple cryptanalytic applications of elliptic curve
pairings. We first give some definitions.

Let E/Fq be an elliptic curve defined over Fq, P,Q, S, T ∈ E.

— Let r be a positive integer. If [r]P = O, then we say that P is an r-torsion point of
E.

— The set of all r-torsion points of E forms a subgroup of E (Fq), the r-torsion group
E[r].

— Let p := char(Fq) (i.e. q = pk for some prime p), then if p - r, E[r] ∼= Z/rZ× Z/rZ.
In all of the following, we will assume to be in this case.

— The embedding degree of r in Fq is the smallest integer d s.t. E[r] ⊆ E (Fqd), or

equivalently s.t. qd ≡ 1 mod r, or µr ⊆ F×
qd

(where µr denotes the group of rth

roots of unity).

— The Weil pairing er is a map E[r]×E[r]→ µr that in particular is bilinear (er(S, T⊕
Q) = er(S, T ) er(S,Q); er(S⊕Q,T ) = er(S, T ) er(Q,T )), alternating (er(T, T ) = 1;
er(T, S) = er(S, T )−1) and non-degenerate (if er(S, T ) = 1 for all S ∈ E[r], then
T = O).

— Miller’s algorithm (which uses a “double-and-add” strategy) allows to compute
er(·, ·) with O(log(r)) operations in Fqd .

Exercise 0

Let P , Q ∈ E/Fq have prime order r s.t. char(Fq) - r, and d be the embedding degree of
r in Fq.

1. Show that if Q /∈ 〈P 〉, then 〈P,Q〉 = E[r] and ω := er(P,Q) is a generator of µr.

2. What can you say about er(P,Q) when Q ∈ 〈P 〉?

Exercise 1: Solving (co-)DDHP on elliptic curves with small embedding
degree [based on (Galbraith, Mathematics of PKC, Exercise 26.5.7)]

We reuse the notations of the previous exercise.
The DDHP asks that given (P, [a]P, [b]P, [x]P ), one must decide whether x ≡ ab mod r

or x
$←− J0, r−1K. The co-DDHP asks that given (P, [a]P,Q, [b]Q), one must decide whether

a ≡ b mod r.

Q.1: Show that if Q ∈ 〈P 〉, then DDHP and co-DDHP are equivalent.
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Q.2:

1. Show that if Q /∈ 〈P 〉, one can solve co-DDHP using the Weil pairing er.

2. Assuming that q has a “reasonable size” (e.g. ≈ 256 bits), under which condition
on d will the attack be efficient? How does it relate to the hardness of the DLP in
〈P 〉 (assuming that P ∈ E (Fq))?

3. Why does a similar approach not work for DDHP?

4. Would this unsuccessful approach work if the pairing were not alternating?

Remark. Some alternative pairings to the Weil pairing are sometimes non-alternating.

Exercise 2: The Menezes-Okamoto-Vanstone attack on the elliptic curve
DLP

We reuse the notations of the previous exercise.
We wish to solve the DLP in 〈P 〉 w.r.t. P : given P , R := [k]P , k ∈ J0, r − 1K, find k.

Q. 1: Give an expression of er(R,Q) = e([k]P,Q) in function of k and ω := er(P,Q).

Q. 2: Using the previous expression, show how to retrieve k by solving a DLP in F×
qd

.

Q. 3: Conclude on the importance of the embedding degree for the hardness of the DLP
in 〈P 〉.

Note: In most cases, this attack is not a concern, as the embedding degree is usually
expected to be proportional to r (and its value can be easily computed). However, applica-
tions of pairing-based cryptography precisely require it to be “small enough” for arithmetic
in Fqd to be efficient, and one must be careful in how to choose the systems’ parameters
to ensure the hardness of the DLP both in E and in Fqd .
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