Crypto Engineering ECC

2020-11-13

In these exercices, we will study two simple cryptanalytic applications of elliptic curve pairings. We first give some definitions.

Let E/\mathbb{F}_q be an elliptic curve defined over \mathbb{F}_q , $P,Q,S,T\in E$.

- Let r be a positive integer. If [r]P = O, then we say that P is an r-torsion point of E.
- The set of all r-torsion points of E forms a subgroup of $E(\overline{\mathbb{F}_q})$, the r-torsion group E[r].
- Let $p := \operatorname{char}(\mathbb{F}_q)$ (i.e. $q = p^k$ for some prime p), then if $p \nmid r$, $E[r] \cong \mathbb{Z}/r\mathbb{Z} \times \mathbb{Z}/r\mathbb{Z}$. In all of the following, we will assume to be in this case.
- The embedding degree of r in \mathbb{F}_q is the smallest integer d s.t. $E[r] \subseteq E(\mathbb{F}_{q^d})$, or equivalently s.t. $q^d \equiv 1 \mod r$, or $\mu_r \subseteq \mathbb{F}_{q^d}^{\times}$ (where μ_r denotes the group of r^{th} roots of unity).
- The Weil pairing e_r is a map $E[r] \times E[r] \to \mu_r$ that in particular is bilinear $(e_r(S, T \oplus Q) = e_r(S, T) e_r(S, Q); e_r(S \oplus Q, T) = e_r(S, T) e_r(Q, T))$, alternating $(e_r(T, T) = 1; e_r(T, S) = e_r(S, T)^{-1})$ and non-degenerate (if $e_r(S, T) = 1$ for all $S \in E[r]$, then T = O).
- Miller's algorithm (which uses a "double-and-add" strategy) allows to compute $e_r(\cdot,\cdot)$ with $O(\log(r))$ operations in \mathbb{F}_{q^d} .

Exercise 0

Let $P, Q \in E/\mathbb{F}_q$ have prime order r s.t. $\operatorname{char}(\mathbb{F}_q) \nmid r$, and d be the embedding degree of r in \mathbb{F}_q .

- 1. Show that if $Q \notin \langle P \rangle$, then $\langle P, Q \rangle = E[r]$ and $\omega := e_r(P, Q)$ is a generator of μ_r .
- 2. What can you say about $e_r(P,Q)$ when $Q \in \langle P \rangle$?

Exercise 1: Solving (co-)DDHP on elliptic curves with small embedding degree [based on (Galbraith, *Mathematics of PKC*, Exercise 26.5.7)]

We reuse the notations of the previous exercise.

The DDHP asks that given (P, [a]P, [b]P, [x]P), one must decide whether $x \equiv ab \mod r$ or $x \stackrel{\$}{\leftarrow} [0, r-1]$. The co-DDHP asks that given (P, [a]P, Q, [b]Q), one must decide whether $a \equiv b \mod r$.

Q.1: Show that if $Q \in \langle P \rangle$, then DDHP and co-DDHP are equivalent.

Q.2:

- 1. Show that if $Q \notin \langle P \rangle$, one can solve co-DDHP using the Weil pairing e_r .
- 2. Assuming that q has a "reasonable size" (e.g. ≈ 256 bits), under which condition on d will the attack be efficient? How does it relate to the hardness of the DLP in $\langle P \rangle$ (assuming that $P \in E(\mathbb{F}_q)$)?
- 3. Why does a similar approach not work for DDHP?
- 4. Would this unsuccessful approach work if the pairing were not alternating?

REMARK. Some alternative pairings to the Weil pairing are sometimes non-alternating.

Exercise 2: The Menezes-Okamoto-Vanstone attack on the elliptic curve DLP

We reuse the notations of the previous exercise.

We wish to solve the DLP in $\langle P \rangle$ w.r.t. P: given $P, R := [k]P, k \in [0, r-1]$, find k.

- **Q. 1:** Give an expression of $e_r(R,Q) = e([k]P,Q)$ in function of k and $\omega := e_r(P,Q)$.
- **Q. 2:** Using the previous expression, show how to retrieve k by solving a DLP in $\mathbb{F}_{a^d}^{\times}$.
- **Q. 3:** Conclude on the importance of the embedding degree for the hardness of the DLP in $\langle P \rangle$.

Note: In most cases, this attack is not a concern, as the embedding degree is usually expected to be proportional to r (and its value can be easily computed). However, applications of *pairing-based* cryptography precisely require it to be "small enough" for arithmetic in \mathbb{F}_{q^d} to be efficient, and one must be careful in how to choose the systems' parameters to ensure the hardness of the DLP both in E and in \mathbb{F}_{q^d} .