
Elliptic curve cryptography 2020–11–03/13 1/34

Crypto Engineering ’20
]

Elliptic curve cryptography

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2020–11–03/13

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

Elliptic curve cryptography 2020–11–03/13 2/34

References

This part of the course is mostly based on:

I Curve-based cryptography, Ben Smith (The Famous Yurt
School, 2016)

I Pairings for beginners, Craig Costello

I Montgomery curves and their arithmetic, Craig Costello &
Ben Smith (2018)

Elliptic curve cryptography 2020–11–03/13 3/34

Motivation

DLP

Recall that given a group G = 〈g〉 of prime order N, the discrete
logarithm problem in G asks that given (g , g x) with

x
$←− J0,N − 1K, find x

If we know a group where the DLP is hard, we can do:

I Public key-exchange (Diffie-Hellman)

I Signatures (Schnorr; DSA...)

I (Semi-Homomorphic) public-key encryption (ElGamal)

In a generic group model, solving a DLP instance requires expected
≈
√
N group operations (Shoup, 1997)

Elliptic curve cryptography 2020–11–03/13 4/34

Motivation (cont.): DLP/CDHP/DDHP precisions

I Actual cryptosystems rarely need a hard DLP per se, rather

I A hard CDHP (e.g. in Diffie-Hellman)

I A hard DDHP (e.g. in textbook ElGamal)

I But it is possible to solve a DDHP by solving a CDHP and to
solve a CDHP by solving a DLP

I In most groups, the hardness of the DLP gives a good
indication of the hardness of CDHP and DDHP (but there are
counter-examples, cf. TD)

Elliptic curve cryptography 2020–11–03/13 5/34

Motivation (cont.)

I Typical instantiation for G: take F×p , where p is a “large”
prime
I It may also be fine to work with non-prime fields of

medium/large characteristic

I But F×p is NOT a generic group. DLP is much easier!

I The Number field sieve (NFS) has subexponential “Lp(1/3)”
complexity
I Lx(α, c) := exp((c + o(1))(log x)α(log log x)1−α)

I E.g. a DLOG computation with p ≈ 2795 took 3 200
core-years ≪ 2398 group operations (Boudot et al., 2020)

I Even better NFS variants exist in fields of small characteristic
 a recent record in characteristic two is a DLOG
computation in F230750 , taking 2 900 core-years (Granger et al.,
2019)

Elliptic curve cryptography 2020–11–03/13 6/34

Exeunt multiplicative groups, enter elliptic curves

I A prime-ordered group of points on a (well-chosen) elliptic
curve is a good cryptographic approximation of a generic
group

I ⇒ the best-known algorithms are generic (e.g. Pollard ρ,
Pollard kangaroos ← cf. TP#3)

I For n-bit security, pick a prime-ordered group of 22n elements;
double security ⇒ double the bitlength of the order; gives
scalability

So...

I What are these groups like?

I How do you compute in them?

I Can you do fancy stuff?

Elliptic curve cryptography 2020–11–03/13 7/34

First: affine/projective spaces

I The points in the n-dimensional affine space An(Fq) are
n-tuples of Fq elements

I The points in the n-dimensional projective space Pn(Fq) are
equivalence classes over n + 1-tuples of Fq elements, not all
equal to zero, where (X0 : . . . : Xn) ∼ (λX0 : . . . : λXn),
λ ∈ F×q

I Example: (2 : 1 : 0) and (4 : 2 : 0) define the same point (
doesn’t make sense to say that X0 = 2, but saying that
X2 = 0 or X0/X1 = 2 does)

I (In the following, we only consider planes, with affine points
(x , y) and projective points (X : Y : Z))

Elliptic curve cryptography 2020–11–03/13 8/34

Affine/projective spaces (cont.)

I A2 is included in P2 via (typically) (x , y) 7→ (X : Y : 1)

I The inverse mapping is (X : Y : Z) 7→ (X/Z ,Y /Z), only
defined if Z 6= 0

I The projective points of the form (X : Y : 0) are in the
hyperplane at infinity (here this is a line)

Elliptic curve cryptography 2020–11–03/13 9/34

Elliptic curves

An elliptic curve E/Fq can be defined via a “short Weierstraß”
(affine) model: it is the set of points verifying y2 = x3 + ax + b,
a, b ∈ Fq under the non-singularity condition 4a3 + 27b2 6= 0
One often works projectively, using (x , y) 7→ (X/Z ,Y /Z) (and
multiplying everything by Z 3 to clear the denominators), giving the
projective model Y 2Z = X 3 + aXZ 2 + bZ 3

I Such a curve has a unique point at infinity: OE = (0 : 1 : 0)
(or simply O; also recall that (0 : 2 : 0) is the same point)

I We are usually only interested in the points lying in Fq, the
Fq-rational poins of E , written E (Fq)

I There may be different models for the same elliptic curve (≈
different formulas, up to changes of coordinates)

Elliptic curve cryptography 2020–11–03/13 10/34

Group orders of elliptic curves

We will shortly define a group law over E (Fq); for the DLP to be
hard therein we need # E (Fq) to be large enough → how do you
pick E? Fq?

I By Hasse’s theorem, if E is defined over Fq,
E (Fq) = q + 1− t with |t| ≤ 2

√
q

I So to get “n-bit” security, pick q ≈ 22n

I Not much restriction on the exact field choice can use one
with efficient arithmetic such as F2127−1 or F2448−2224−1

I (Then pick E and check that # E (Fq) has a large prime
factor, etc.)

I (“Point counting” is not trivial, but it is reasonably efficient)

Elliptic curve cryptography 2020–11–03/13 11/34

The group law for points of an E.C.

One can define a group over the (Fq-rational) points of an E.C.,
best described geometrically. We first define and describe the
negation 	 of a point

I E.C. have a natural symmetry along the X -axis: if
P = (XP : YP : 1) ∈ E , then so is (XP : −YP : 1) use this
to define 	P as (XP : −YP : 1)

I The point at infinity (0 : 1 : 0) is reflected to (0 : −1 : 0),
which is itself, so 	O = O ← this is going to be the neutral
element

I A projective equation for the vertical line “x = α” is X = αZ ;
if such a line intersects E , it does so in O (since 0 = α0), and
possibly in (α : ±β : 1) where β2 = α3 + aα + b

Elliptic curve cryptography 2020–11–03/13 12/34

The group law (cont.)

Theorem: A line (a degree-one equation) intersects E (a
degree-three equation) in three points, counted with multiplicity

I So knowing P, Q, one can determine the unique other point
R of E on the line going through P and Q (and more: if P
and Q are in E (Fq), so will be R)

I Let P, Q, R ∈ E be colinear; one defines the group law ⊕ by
P ⊕ Q = 	R, for which O is the identity

Why is this a group law over E (or more useful for us, E (Fq))?

I Internal-law, commutativity, existence of unique inverse and
neutral element come from the above algebraic-geometry
arguments

I The harder axiom is associativity... won’t do it here...

Elliptic curve cryptography 2020–11–03/13 13/34

Discrete logarithms in E.C.

I The group of points in an elliptic curve uses additive notation

I So the DLOG of Q ∈ 〈P〉 is m s.t. [m]P = Q, where
[m]P = P ⊕ ...⊕ P m times

I [m]P can be computed in time logarithmic in m using a
“double-and-add” (≡ “square-and-multiply) process

I So we (obviously) need to be able to compute P ⊕ P and
P ⊕ Q

Elliptic curve cryptography 2020–11–03/13 14/34

How to compute in the group?

Let P, Q be in E (Fq), how do you compute P ⊕ Q in practice?

I Elementary if P or Q is O, or P = 	Q
I Need explicit formulas when P = Q 6= O (doubling) and
O 6= P 6= ()Q 6= O (regular addition)

(Back to the) Affine case, example when P 6= Q:

1 Determine the equation y = λx + ν of the line passing
through P and Q

2 E.g. λ = (yQ − yP)/(xQ − xP); ν = (yQxP − yPxQ)/(xP − xQ)

3 Solve (x − xP)(x − xQ)(x − xR) = (x3 + ax + b)− (λx + ν)2

for xR → xR = λ2− xP − xQ (i.e. the point is either P, Q or R,
and it lies both on the E.C. and on the line between P and Q)

4 Deduce yR as −(λxR + ν)

The case P = Q is obtained “similarly” by differentiating E to find
the slope of the tangent at P

Elliptic curve cryptography 2020–11–03/13 15/34

More on group laws

The implementation of the group laws in ECC is important for:
I Performance (obvs.)
I Try also to optimise P ⊕ Q when P is fixed; tripling [3]P (for

doubling/tripling-add chains)...

I Security; need formulas that:
I are always correct (not so easy, actually), even on (possibly)

adversially chosen inputs
I take uniform time to be computed (no special cases)

Some options:

I Use projective coordinates get rid of costly field inversions

I (Possibly) use alternative models for E different formulas

Elliptic curve cryptography 2020–11–03/13 16/34

Example: Twisted Edwards models

Define E/Fq via ax2 + y2 = 1 + dx2y2; the group law on E (Fq) is
completely defined (e.g. for doubling, simply use xP = xQ ,
yP = yQ in the below!) by

(xP , yP)⊕ (xQ , yQ) =

(
xPyQ + yPxQ

1 + dxPxQyPyQ
,
yPyQ − axPxQ

1− dxPxQyPyQ

)
and 	(x , y) = (−x , y), and (0, 1) is the neutral element

I In practice, use a variant with projective coordinates

I One may use such a curve model even if E was initially defined
with a Weierstraß equation (warning: restrictions apply)

Another well-known model is the one of Montgomery curves,
defined (in the affine case) via by2 = x3 + ax2 + x (more about
that one later)

Elliptic curve cryptography 2020–11–03/13 17/34

Caveat: models restrictions

I Not all models are equivalent in terms of the curves they may
define

I For instance, if # E (Fq) is not divisible by 4, then E does not
have an Edwards or Montgomery model
I (Let p be the largest prime that divides # E (Fq) = hp; we say

that E (Fq) has cofactor h)

I But the curves used in some ECC standards are s.t. # E (Fq)
is prime, i.e. have cofactor 1 cannot use the “nicer”
models!
I (We still know complete formulas, cf. Renes et al., EC 2016,

but they’re slower than for e.g. Edwards curves)

(For more about models, formulas... cf. the Explicit-Formulas
Database: https://hyperelliptic.org/EFD/)

https://hyperelliptic.org/EFD/

Elliptic curve cryptography 2020–11–03/13 18/34

Curves for multi-dimensional scalar multiplication

Recall that we are eventually interested in computing [m]P s.t. the
associated DLP is hard m is large, e.g. 256 bits

I One way to speed-up this computation (beyond fast curve
formulas, etc.) is to use a curve with one (or sometimes even
more) efficiently computable endomorphism
φ : E (Fq)→ E (Fq) s.t. the action of φ corresponds to the
multiplication by a large fixed scalar (an eigenvalue) λ, i.e.
∀P ∈ E (Fq), φ(P) = [λ]P

I To compute [m]P, decompose m into (a1, a2) s.t.
[m]P = [a1]P ⊕ [a2]φ(P) (i.e. take a1, a2 s.t. a1 + λa2 ≡ m
mod N, where N = #〈P〉) AND a1, a2 ≤≈

√
m (typically

computed using lattice reduction)

Elliptic curve cryptography 2020–11–03/13 19/34

Curves for multi-dimensional scalar mult. (cont.)

I Usefulness: one can compute [a1]P ⊕ [a2]φ(P) faster than by
computing [a1]P and [a2]φ(P) separately (which would cost
≈ the same as computing [m]P)
I Ex.: for the “FourQ” curve (Costello & Longa, 2015) which

uses 4-dimensional decomposition, using endomorphisms gives
a ≈ 1.8× speed-up

I But: endomorphism-accelerated curves are harder to find, may
have more structure, and may be harder to implement than
regular ones

Elliptic curve cryptography 2020–11–03/13 20/34

Why is multi-dimensional scalar mult. faster?

Say we want to compute [9]P ⊕ [12]φ(P)

I Näıve (non constant-time): [8]P ⊕ P ⊕ [8]φ(P)⊕ [4]φ(P)
6 doubles, 3 adds

I Idea: precompute the points P, φ(P), P ⊕ φ(P) and share the
accumulator, that is:

1 A := O
2 A := A⊕ (P ⊕ φ(P)) = P ⊕ φ(P) (bit 3 of 9 & 12 is 1)
3 A := [2]A = [2]P ⊕ [2]φ(P)
4 A := A⊕ φ(P) = [2]P ⊕ [3]φ(P) (bit 2 of 9 is 0, bit 2 of 12 is

1)
5 A := [2]A = [4]P ⊕ [6]φ(P)
6 A := A⊕ O (do nothing: bit 1 of 9 & 12 is 0)
7 A := [2]A = [8]P ⊕ [12]φ(P)
8 A := A⊕P = [9]P ⊕ [12]φ(P) (bit 0 of 9 is 1, bit 0 of 12 is 0)

 3 doubles, 3 adds

Elliptic curve cryptography 2020–11–03/13 21/34

Actually constant-time scalar multiplication

I When computing [m]P, it is important not to leak anything
about m

I ...for instance its Hamming weight (leaked in the previous
example via e.g. timing or DPA)

I We need a way to compute [m]P in (cryptographic)
constant-time

Elliptic curve cryptography 2020–11–03/13 22/34

The Montgomery ladder

We define the following function, due to Montgomery

scalarm(m, n, P) // m =
∑n−1

i=0 mi2
i

{

A0 = O; A1 = P;

for (i = n-1; i >= 0; i--)

mi = (m >> n) & 1;

if (mi == 0)

(A0,A1) = ([2]A0, A0 + A1);

// simultaneous↪→

else

(A1,A0) = ([2]A1, A0 + A1);

return A0;

}

Elliptic curve cryptography 2020–11–03/13 23/34

The Montgomery ladder (cont.)

Why does this work?
I We have the invariant A1 	 A0 = P
I Initially true
I Then (first branch): A′0 = [2]A0 = [2](A1 	 P),

A′1 = A0 ⊕ A1 = (A1 	 P)⊕ A1 = [2]A1 	 P
I And (second branch): A′1 = [2]A1 = [2](A0 ⊕ P),

A′0 = A0 ⊕ A1 = A0 ⊕ A0 ⊕ P = [2]A0 ⊕ P

I We also have that at the end of step i , A0 = [m/2i]P (and
thence A1 = [m/2i + 1]P)
I Initially true
I Then (first branch): mi = 0 → m/2i = 2× (m/2i+1) and

A′0 = [2]A0 = [2]([m/2i+1]P) = [m/2i]P
I And (second branch): mi = 1 → m/2i = 2× (m/2i+1) + 1 and

A′0 = A0 ⊕ A1 = [m/2i+1]P ⊕ [m/2i+1 + 1]P = [m/2i]P

I We return the last value A0 = [m/1]P

Elliptic curve cryptography 2020–11–03/13 24/34

The Montgomery ladder (cont.)

I Constant-timedness: the two branches are exactly the same
up to the role of A0/A1

I But we dislike branches in cryptography...

I So use a (constant-time) conditional swap instead

(T0, T1) = cswap(mi, A0, A1);

(T0, T1) = ([2]T0, T0 + T1);

(A0, A1) = cswap(mi, T0, T1);

I ...will be truly constant-time (as long as the group formulas
are, cf. above)

Elliptic curve cryptography 2020–11–03/13 25/34

A constant-time conditional swap

cswap(b,n,x,y) // x, y are n-bit strings to swap if

the bit b == 1↪→

{

bn = broadcast(b, n); // bn = bbbbb...bbbb

t = b & (x ^ y);

x = x ^ t;

y = y ^ t;

return (x,y);

}

On two’s complement architecture, one can implement broadcast
on words as (b ^ 1) - 1

Elliptic curve cryptography 2020–11–03/13 26/34

Going beyond groups

In a Diffie-Hellman key-exchange, the group is useful to get:

I commutativity correctness of the protocol

I security (i.e. CDHP is hard, ≈ DLP is hard)

But we aren’t that much interested in the group elements
themselves

I Recall that for P ∈ E (Fq)\{O}, xP ∈ Fq determines (P,	P),
i.e. “most” of the point

I Can we speed-up computations/improve resilience by
“simplifying” P?

I An idea: why not just working with (XP : ZP), i.e. working on
E (Fq)/〈	〉 ∼= P1(Fq)?

I We define x : E → P1, P = (XP : YP : ZP) 7→ (XP : ZP)

Elliptic curve cryptography 2020–11–03/13 27/34

Pseudo-operations on E

We can define [m]∗ : x(P) 7→ x([m]P), but how do we compute it?

I Observe that x(P), x(Q) determine both
x(P ⊕ Q) = x(P 	 Q) and x(P 	 Q) = x(P ⊕ Q)

I We can define xADD : (x(P), x(Q), x(P 	 Q)) 7→ x(P ⊕ Q)
and xDBL : x(P) 7→ x([2]P)

I The Montgomery ladder “differential addition chain” will
provide a way to compute x([m]P) using only xADDs and
xDBLs

Elliptic curve cryptography 2020–11–03/13 28/34

The Montgomery ladder for [m]∗

pscalarm(m, n, x(P))

{

A0 = x(O); A1 = x(P);

for (i = n-1; i >= 0; i--)

(T0, T1) = cswap(mi, A0, A1);

(T0, T1) = (xDBL(T0), xADD(T0, T1,

x(P))); // or a fused ``xDBLADD''↪→

(A0, A1) = cswap(mi, T0, T1);

return A0;

}

Elliptic curve cryptography 2020–11–03/13 29/34

The Montgomery ladder for [m]∗ (cont.)

Why does this work?

I xADD needs as input x(P), x(Q), x(P 	 Q)
I But we have already seen that in the original ladder A1 	 A0

is always equal to P
I Here: A1 	 A0 = x(P)

I Since T0 	T1 = A1 	A0 or A0 	A1, it is equal to ±P (in the
original ladder)

I So x(T0 	 T1) = x(P)

I So here, T0 	 T1 = x(P) directly

Elliptic curve cryptography 2020–11–03/13 30/34

x-line arithmetic on Montgomery curves

We still need to define explicit formulas for xADD and xDBL. We
will show that for curves given in a Montgomery model, which
(along with the above ladder) were originally introduced to speed
up ECM factorisation (formulas also exist for the more general
Weierstraß model, but they’re slower)

A Montgomery curve E/Fq is given by the equation
BY 2Z = X 3 + AX 2Z + XZ 2 where B,A± 2 6= 0. One can then
show the formulas:

xADD((XP : ZP), (XQ : ZQ), (XP	Q : ZP	Q)) =
(ZP	Q(SPTQ + TPSQ)2 : XP	Q(SPTQ − TPSQ)2), where

Sα := Xα − Zα, Tα := Xα + Zα does not depend on A nor B!

xDBL(X : Z) = (UV : W (U + CW)), where U := (X + Z)2,

V := (X − Z)2, W := R − S , C := (A− 2)/4 only depends on A!

Elliptic curve cryptography 2020–11–03/13 31/34

x-only Diffie-Hellman

We can now do elliptic-curve Diffie-Hellman in two ways

I Take P ∈ E (Fq), A computes and sends [a]P, receives [b]P
and computes [ab]P (Working in E (Fq))

I Take x(P),P ∈ E (Fq), A computes and sends [a]∗P, receives
[b]∗P and computes [ab]∗P (Working in E (Fq)/〈	〉)

In both cases, we must check that P lies on E (Fq) (possible
problems if soemone is lying/injected a fault/made a mistake...
Also somewhat expensive)

I Can we define another variant s.t. no check is necessary?

Elliptic curve cryptography 2020–11–03/13 32/34

(Quadratic) twists of Montgomery curves

Let E/Fq : BY 2Z = X 3 + AX 2Z + XZ 2,
E ′/Fq : B ′Y 2Z = X 3 + AX 2Z + XZ 2, be two Montgomery curves;
E and E ′ are isomorphic via (X ,Y) 7→ (X ,

√
B/B ′Y)

I If B/B ′ is a square in Fq (�Fq(B/B ′)), E and E ′ are
isomorphic (“the same”) over Fq

I Otherwise, �Fq2 (B/B ′) since Fq2
∼= Fq[

√
R] = Fq/〈X 2 − R〉

for any non-square R in Fq, so E and E ′ are isomorphic over
Fq2 , but not (“are different”) over Fq, and E ′ is said to be a
quadratic twist of E

I Also ¬�Fq(B/B ′) iff. exactly one of B or B ′ is a non-square.
(If neither is a square and p := char(Fq), b :=

(
N(B)
p

)
= −1,

b′ :=
(

N(1/B′)
p

)
=

(
N(B′)

p

)
= −1, and

(
N(B/B′)

p

)
= bb′ = 1 since both the

field norm and the Legendre symbol are multiplicative) (So all quadratic twists

of E are Fq-isomorphic)

Elliptic curve cryptography 2020–11–03/13 33/34

Quadratic twists (cont.)

Now let E/Fq : B . . ., E ′/Fq : B ′ . . . be a curve and “its” quadratic
twist (unique up to iso.) and x ∈ Fq, then ∃P ∈ E (Fq) or E ′(Fq)
s.t. x(P) = x . Proof (affine case):

I Let x ′ := x3 + Ax2 + x , and assume w.l.o.g. that �Fq(B),
¬�Fq(B ′)

I Then if �Fq(x ′), �Fq(x ′/B) and (x ,
√
x ′/B) ∈ E (Fq)

I Else �Fq(x ′/B ′) and (x ,
√
x ′/B ′) ∈ E ′(Fq)

Exercice: show that this would not be true if E and E ′ were
Fq-isomorphic

Elliptic curve cryptography 2020–11–03/13 34/34

Back to x-only Diffie-Hellman

We now have a strategy for avoiding point validation in (x-only)
ECDH:

I Find a curve pair (E/Fq,E
′/Fq) where E ′ is a quadratic twist

of E , and the DLP/CDHP is hard on both of them (in that
case we say that E is twist-secure)

I Pick x ∈ Fq, A computes and sends [a]∗P, receives [b]∗P and
computes [ab]∗P, where P is implicitly defined by x and is on
E (Fq) or E ′(Fq) (Working in E (Fq)/〈	〉 ∪ E ′(Fq)/〈	〉) (One

must still check that 〈P〉 for the induced P has a large order, and sometimes

one may require that this group’s order is prime, which is not guaranteed here)

 The basis of Curve25519 software (Bernstein, 2006)

