Crypto Engineering '20

Elliptic curve cryptography

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2020-11-03/13

References

This part of the course is mostly based on:

- Curve-based cryptography, Ben Smith (The Famous Yurt School, 2016)
- Pairings for beginners, Craig Costello
- Montgomery curves and their arithmetic, Craig Costello \& Ben Smith (2018)

Motivation

DLP

Recall that given a group $\mathbb{G}=\langle g\rangle$ of prime order N, the discrete logarithm problem in \mathbb{G} asks that given $\left(g, g^{x}\right)$ with $x \stackrel{\varsigma}{\leftarrow} \llbracket 0, N-1 \rrbracket$, find x

If we know a group where the DLP is hard, we can do:

- Public key-exchange (Diffie-Hellman)
- Signatures (Schnorr; DSA...)
- (Semi-Homomorphic) public-key encryption (EIGamal) In a generic group model, solving a DLP instance requires expected $\approx \sqrt{N}$ group operations (Shoup, 1997)
- Actual cryptosystems rarely need a hard DLP per se, rather
- A hard CDHP (e.g. in Diffie-Hellman)
- A hard DDHP (e.g. in textbook EIGamal)
- But it is possible to solve a DDHP by solving a CDHP and to solve a CDHP by solving a DLP
- In most groups, the hardness of the DLP gives a good indication of the hardness of CDHP and DDHP (but there are counter-examples, cf. TD)

Motivation (cont.)

- Typical instantiation for \mathbb{G} : take \mathbb{F}_{p}^{\times}, where p is a "large" prime
- It may also be fine to work with non-prime fields of medium/large characteristic
- But \mathbb{F}_{p}^{\times}is NOT a generic group. DLP is much easier!
- The Number field sieve (NFS) has subexponential " $\mathrm{L}_{p}(1 / 3)$ " complexity
- $\mathrm{L}_{x}(\alpha, c):=\exp \left((c+o(1))(\log x)^{\alpha}(\log \log x)^{1-\alpha}\right)$
- E.g. a DLOG computation with $p \approx 2^{795}$ took 3200 core-years $\lll 2^{398}$ group operations (Boudot et al., 2020)
- Even better NFS variants exist in fields of small characteristic \rightsquigarrow a recent record in characteristic two is a DLOG computation in \mathbb{F}_{230750}, taking 2900 core-years (Granger et al., 2019)

Exeunt multiplicative groups, enter elliptic curves

- A prime-ordered group of points on a (well-chosen) elliptic curve is a good cryptographic approximation of a generic group
- \Rightarrow the best-known algorithms are generic (e.g. Pollard ρ, Pollard kangaroos $\leftarrow \mathrm{cf}$. TP\#3)
- For n-bit security, pick a prime-ordered group of $2^{2 n}$ elements; double security \Rightarrow double the bitlength of the order; gives scalability

So...

- What are these groups like?
- How do you compute in them?
- Can you do fancy stuff?

First: affine/projective spaces

- The points in the n-dimensional affine space $\mathbb{A}^{n}\left(\mathbb{F}_{q}\right)$ are n-tuples of \mathbb{F}_{q} elements
- The points in the n-dimensional projective space $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$ are equivalence classes over $n+1$-tuples of \mathbb{F}_{q} elements, not all equal to zero, where $\left(X_{0}: \ldots: X_{n}\right) \sim\left(\lambda X_{0}: \ldots: \lambda X_{n}\right)$, $\lambda \in \mathbb{F}_{q}^{\times}$
- Example: $(2: 1: 0)$ and $(4: 2: 0)$ define the same point $(\rightsquigarrow$ doesn't make sense to say that $X_{0}=2$, but saying that $X_{2}=0$ or $X_{0} / X_{1}=2$ does)
- (In the following, we only consider planes, with affine points (x, y) and projective points $(X: Y: Z))$

Affine/projective spaces (cont.)

- \mathbb{A}^{2} is included in \mathbb{P}^{2} via (typically) $(x, y) \mapsto(X: Y: 1)$
- The inverse mapping is $(X: Y: Z) \mapsto(X / Z, Y / Z)$, only defined if $Z \neq 0$
- The projective points of the form $(X: Y: 0)$ are in the hyperplane at infinity (here this is a line)

Elliptic curves

An elliptic curve E / \mathbb{F}_{q} can be defined via a "short Weierstraß" (affine) model: it is the set of points verifying $y^{2}=x^{3}+a x+b$, $a, b \in \mathbb{F}_{q}$ under the non-singularity condition $4 a^{3}+27 b^{2} \neq 0$ One often works projectively, using $(x, y) \mapsto(X / Z, Y / Z)$ (and multiplying everything by Z^{3} to clear the denominators), giving the projective model $Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3}$

- Such a curve has a unique point at infinity: $O_{E}=(0: 1: 0)$ (or simply O; also recall that $(0: 2: 0)$ is the same point)
- We are usually only interested in the points lying in \mathbb{F}_{q}, the \mathbb{F}_{q}-rational poins of E, written $E\left(\mathbb{F}_{q}\right)$
- There may be different models for the same elliptic curve (\approx different formulas, up to changes of coordinates)

Group orders of elliptic curves

We will shortly define a group law over $E\left(\mathbb{F}_{q}\right)$; for the DLP to be hard therein we need $\# E\left(\mathbb{F}_{q}\right)$ to be large enough \rightarrow how do you pick E ? \mathbb{F}_{q} ?

- By Hasse's theorem, if E is defined over \mathbb{F}_{q}, $\# E\left(\mathbb{F}_{q}\right)=q+1-t$ with $|t| \leq 2 \sqrt{q}$
- So to get "n-bit" security, pick $q \approx 2^{2 n}$
- Not much restriction on the exact field choice \rightsquigarrow can use one with efficient arithmetic such as $\mathbb{F}_{2^{127}-1}$ or $\mathbb{F}_{2^{448}-2^{224}-1}$
- (Then pick E and check that $\# E\left(\mathbb{F}_{q}\right)$ has a large prime factor, etc.)
- ("Point counting" is not trivial, but it is reasonably efficient)

The group law for points of an E.C.

One can define a group over the (\mathbb{F}_{q}-rational) points of an E.C., best described geometrically. We first define and describe the negation \ominus of a point

- E.C. have a natural symmetry along the X-axis: if $P=\left(X_{P}: Y_{P}: 1\right) \in E$, then so is $\left(X_{P}:-Y_{P}: 1\right) \rightsquigarrow$ use this to define $\ominus P$ as $\left(X_{P}:-Y_{P}: 1\right)$
- The point at infinity $(0: 1: 0)$ is reflected to $(0:-1: 0)$, which is itself, so $\ominus O=O \leftarrow$ this is going to be the neutral element
- A projective equation for the vertical line " $x=\alpha$ " is $X=\alpha Z$; if such a line intersects E, it does so in O (since $0=\alpha 0$), and possibly in $(\alpha: \pm \beta: 1)$ where $\beta^{2}=\alpha^{3}+a \alpha+b$

The group law (cont.)

Theorem: A line (a degree-one equation) intersects E (a degree-three equation) in three points, counted with multiplicity

- So knowing P, Q, one can determine the unique other point R of E on the line going through P and Q (and more: if P and Q are in $E\left(\mathbb{F}_{q}\right)$, so will be R)
- Let $P, Q, R \in E$ be colinear; one defines the group law \oplus by $P \oplus Q=\ominus R$, for which O is the identity
Why is this a group law over E (or more useful for us, $E\left(\mathbb{F}_{q}\right)$)?
- Internal-law, commutativity, existence of unique inverse and neutral element come from the above algebraic-geometry arguments
- The harder axiom is associativity... won't do it here...

Discrete logarithms in E.C.

- The group of points in an elliptic curve uses additive notation
- So the DLOG of $Q \in\langle P\rangle$ is m s.t. [m] $P=Q$, where $[m] P=P \oplus \ldots \oplus P m$ times
- $[m] P$ can be computed in time logarithmic in m using a "double-and-add" (\equiv "square-and-multiply) process
- So we (obviously) need to be able to compute $P \oplus P$ and $P \oplus Q$

How to compute in the group?

Let P, Q be in $E\left(\mathbb{F}_{q}\right)$, how do you compute $P \oplus Q$ in practice?

- Elementary if P or Q is O, or $P=\ominus Q$
- Need explicit formulas when $P=Q \neq O$ (doubling) and $O \neq P \neq(\ominus) Q \neq O$ (regular addition)
(Back to the) Affine case, example when $P \neq Q$:
1 Determine the equation $y=\lambda x+\nu$ of the line passing through P and Q
2 E.g. $\lambda=\left(y_{Q}-y_{P}\right) /\left(x_{Q}-x_{P}\right) ; \nu=\left(y_{Q} x_{P}-y_{P} x_{Q}\right) /\left(x_{P}-x_{Q}\right)$
3 Solve $\left(x-x_{P}\right)\left(x-x_{Q}\right)\left(x-x_{R}\right)=\left(x^{3}+a x+b\right)-(\lambda x+\nu)^{2}$ for $x_{R} \rightarrow x_{R}=\lambda^{2}-x_{P}-x_{Q}$ (i.e. the point is either P, Q or R , and it lies both on the E.C. and on the line between P and Q)
4 Deduce y_{R} as $-\left(\lambda x_{R}+\nu\right)$
The case $P=Q$ is obtained "similarly" by differentiating E to find the slope of the tangent at P

More on group laws

The implementation of the group laws in ECC is important for:

- Performance (obvs.)
- Try also to optimise $P \oplus Q$ when P is fixed; tripling [3] P (for doubling/tripling-add chains)...
- Security; need formulas that:
- are always correct (not so easy, actually), even on (possibly) adversially chosen inputs
- take uniform time to be computed (no special cases)

Some options:

- Use projective coordinates \rightsquigarrow get rid of costly field inversions
- (Possibly) use alternative models for $E \rightsquigarrow$ different formulas

Example: Twisted Edwards models

Define E / \mathbb{F}_{q} via $a x^{2}+y^{2}=1+d x^{2} y^{2}$; the group law on $E\left(\mathbb{F}_{q}\right)$ is completely defined (e.g. for doubling, simply use $x_{P}=x_{Q}$, $y_{P}=y_{Q}$ in the below!) by

$$
\left(x_{P}, y_{P}\right) \oplus\left(x_{Q}, y_{Q}\right)=\left(\frac{x_{P} y_{Q}+y_{P} x_{Q}}{1+d x_{P} x_{Q} y_{P} y_{Q}}, \frac{y_{P} y_{Q}-a x_{P} x_{Q}}{1-d x_{P} x_{Q} y_{P} y_{Q}}\right)
$$

and $\ominus(x, y)=(-x, y)$, and $(0,1)$ is the neutral element

- In practice, use a variant with projective coordinates
- One may use such a curve model even if E was initially defined with a Weierstraß equation (warning: restrictions apply)
Another well-known model is the one of Montgomery curves, defined (in the affine case) via $b y^{2}=x^{3}+a x^{2}+x$ (more about that one later)

Caveat: models restrictions

- Not all models are equivalent in terms of the curves they may define
- For instance, if $\# E\left(\mathbb{F}_{q}\right)$ is not divisible by 4 , then E does not have an Edwards or Montgomery model
- (Let p be the largest prime that divides $\# E\left(\mathbb{F}_{q}\right)=h p$; we say that $E\left(\mathbb{F}_{q}\right)$ has cofactor h)
- But the curves used in some ECC standards are s.t. $\# E\left(\mathbb{F}_{q}\right)$ is prime, i.e. have cofactor $1 \rightsquigarrow$ cannot use the "nicer" models!
- (We still know complete formulas, cf. Renes et al., EC 2016, but they're slower than for e.g. Edwards curves)
(For more about models, formulas... cf. the Explicit-Formulas
Database: https://hyperelliptic.org/EFD/)

Curves for multi-dimensional scalar multiplication

Recall that we are eventually interested in computing [m] P s.t. the associated DLP is hard $\rightsquigarrow m$ is large, e.g. 256 bits

- One way to speed-up this computation (beyond fast curve formulas, etc.) is to use a curve with one (or sometimes even more) efficiently computable endomorphism
$\phi: E\left(\mathbb{F}_{q}\right) \rightarrow E\left(\mathbb{F}_{q}\right)$ s.t. the action of ϕ corresponds to the multiplication by a large fixed scalar (an eigenvalue) λ, i.e. $\forall P \in E\left(\mathbb{F}_{q}\right), \phi(P)=[\lambda] P$
- To compute $[m] P$, decompose m into $\left(a_{1}, a_{2}\right)$ s.t. $[m] P=\left[a_{1}\right] P \oplus\left[a_{2}\right] \phi(P)$ (i.e. take a_{1}, a_{2} s.t. $a_{1}+\lambda a_{2} \equiv m$ $\bmod N$, where $N=\#\langle P\rangle$) AND $a_{1}, a_{2} \leq \approx \sqrt{m}$ (typically computed using lattice reduction)

Curves for multi-dimensional scalar mult. (cont.)

- Usefulness: one can compute $\left[a_{1}\right] P \oplus\left[a_{2}\right] \phi(P)$ faster than by computing $\left[a_{1}\right] P$ and $\left[a_{2}\right] \phi(P)$ separately (which would cost \approx the same as computing $[m] P$)
- Ex.: for the "FourQ" curve (Costello \& Longa, 2015) which uses 4-dimensional decomposition, using endomorphisms gives $a \approx 1.8 \times$ speed-up
- But: endomorphism-accelerated curves are harder to find, may have more structure, and may be harder to implement than regular ones

Why is multi-dimensional scalar mult. faster?

Say we want to compute $[9] P \oplus[12] \phi(P)$

- Naïve (non constant-time): [8] $P \oplus P \oplus[8] \phi(P) \oplus[4] \phi(P) \rightsquigarrow$ 6 doubles, 3 adds
- Idea: precompute the points $P, \phi(P), P \oplus \phi(P)$ and share the accumulator, that is:

```
\(11:=O\)
2 \(A:=A \oplus(P \oplus \phi(P))=P \oplus \phi(P)\) (bit 3 of \(9 \& 12\) is 1 )
3 \(A:=[2] A=[2] P \oplus[2] \phi(P)\)
\(4 A:=A \oplus \phi(P)=[2] P \oplus[3] \phi(P)\) (bit 2 of 9 is 0 , bit 2 of 12 is
1)
5 5 \(A:=[2] A=[4] P \oplus[6] \phi(P)\)
6 \(A:=A \oplus O\) (do nothing: bit 1 of \(9 \& 12\) is 0 )
\(7 A:=[2] A=[8] P \oplus[12] \phi(P)\)
8 \(A:=A \oplus P=[9] P \oplus[12] \phi(P)\) (bit 0 of 9 is 1 , bit 0 of 12 is 0 )
\(\rightsquigarrow 3\) doubles, 3 adds
```


Actually constant-time scalar multiplication

- When computing $[m] P$, it is important not to leak anything about m
- ...for instance its Hamming weight (leaked in the previous example via e.g. timing or DPA)
- We need a way to compute $[m] P$ in (cryptographic) constant-time

The Montgomery ladder

We define the following function, due to Montgomery
$\operatorname{scalarm}(\mathrm{m}, \mathrm{n}, \mathrm{P}) / / m=\sum_{i=0}^{n-1} m_{i} 2^{i}$
\{

$$
\begin{aligned}
& \mathrm{AO}=\mathrm{O} ; \mathrm{A} 1=\mathrm{P} \text {; } \\
& \text { for (i }=n-1 \text {; } i>=0 ; i-- \text {) } \\
& \mathrm{mi}=(\mathrm{m} \gg \mathrm{n}) \& 1 \text {; } \\
& \text { if (mi == 0) } \\
& (\mathrm{AO}, \mathrm{~A} 1)=([2] \mathrm{AO}, \mathrm{~A} 0+\mathrm{A} 1) \text {; } \\
& \rightarrow \text { // simultaneous } \\
& \text { else }
\end{aligned}
$$

$$
(\mathrm{A} 1, \mathrm{~A} 0)=([2] \mathrm{A} 1, \mathrm{~A} 0+\mathrm{A} 1) ;
$$

return AO;
\}

The Montgomery ladder (cont.)

Why does this work?

- We have the invariant $A_{1} \ominus A_{0}=P$
- Initially true
$>$ Then (first branch): $A_{0}^{\prime}=[2] A_{0}=[2]\left(A_{1} \ominus P\right)$,

$$
A_{1}^{\prime}=A_{0} \oplus A_{1}=\left(A_{1} \ominus P\right) \oplus A_{1}=[2] A_{1} \ominus P
$$

\rightarrow And (second branch): $A_{1}^{\prime}=[2] A_{1}=[2]\left(A_{0} \oplus P\right)$,

$$
A_{0}^{\prime}=A_{0} \oplus A_{1}=A_{0} \oplus A_{0} \oplus P=[2] A_{0} \oplus P
$$

- We also have that at the end of step $i, A_{0}=\left[\mathrm{m} / 2^{i}\right] P$ (and thence $A_{1}=\left[m / 2^{i}+1\right] P$)
- Initially true
- Then (first branch): $m_{i}=0 \rightarrow m / 2^{i}=2 \times\left(m / 2^{i+1}\right)$ and

$$
A_{0}^{\prime}=[2] A_{0}=[2]\left(\left[m / 2^{i+1}\right] P\right)=\left[m / 2^{i}\right] P
$$

\rightarrow And (second branch): $m_{i}=1 \rightarrow m / 2^{i}=2 \times\left(m / 2^{i+1}\right)+1$ and $A_{0}^{\prime}=A_{0} \oplus A_{1}=\left[m / 2^{i+1}\right] P \oplus\left[m / 2^{i+1}+1\right] P=\left[m / 2^{i}\right] P$

- We return the last value $A_{0}=[m / 1] P$

The Montgomery ladder (cont.)

- Constant-timedness: the two branches are exactly the same up to the role of A_{0} / A_{1}
- But we dislike branches in cryptography...
- So use a (constant-time) conditional swap instead (T0, T1) $=\operatorname{cswap}(m i, A 0, A 1)$;
$(\mathrm{TO}, \mathrm{T} 1)=([2] \mathrm{TO}, \mathrm{TO}+\mathrm{T} 1)$;
(AO, A1) = cswap(mi, T0, T1);
- ...will be truly constant-time (as long as the group formulas are, cf. above)

A constant-time conditional swap

```
cswap(b,n,x,y) // \(x, y\) are \(n\)-bit strings to swap if
\(\rightarrow\) the bit \(b==1\)
\{
    bn = broadcast(b, n); // bn = bbbbb...bbbb
    \(\mathrm{t}=\mathrm{b}\) \& (x ^ y ) ;
    \(\mathrm{x}=\mathrm{x}\) ~ t ;
    \(\mathrm{y}=\mathrm{y}\) - t ;
    return ( \(\mathrm{x}, \mathrm{y}\) );
\}
```

On two's complement architecture, one can implement broadcast on words as (b - 1) - 1

Going beyond groups

In a Diffie-Hellman key-exchange, the group is useful to get:

- commutativity \rightsquigarrow correctness of the protocol
- security (i.e. CDHP is hard, \approx DLP is hard)

But we aren't that much interested in the group elements themselves

- Recall that for $P \in E\left(\mathbb{F}_{q}\right) \backslash\{O\}, x_{P} \in \mathbb{F}_{q}$ determines $(P, \ominus P)$, i.e. "most" of the point
- Can we speed-up computations/improve resilience by "simplifying" P ?
- An idea: why not just working with $\left(X_{P}: Z_{P}\right)$, i.e. working on $E\left(\mathbb{F}_{q}\right) /\langle\ominus\rangle \cong \mathbb{P}^{1}\left(\mathbb{F}_{q}\right)$?
- We define $\boldsymbol{x}: E \rightarrow \mathbb{P}^{1}, P=\left(X_{P}: Y_{P}: Z_{P}\right) \mapsto\left(X_{P}: Z_{P}\right)$

Pseudo-operations on E

We can define $[m]_{*}: \boldsymbol{x}(P) \mapsto \boldsymbol{x}([m] P)$, but how do we compute it?

- Observe that $\boldsymbol{x}(P), \boldsymbol{x}(Q)$ determine both $\boldsymbol{x}(P \oplus Q)=\boldsymbol{x}(\ominus P \ominus Q)$ and $\boldsymbol{x}(P \ominus Q)=\boldsymbol{x}(\ominus P \oplus Q)$
- We can define xADD : $(\boldsymbol{x}(P), \boldsymbol{x}(Q), \boldsymbol{x}(P \ominus Q)) \mapsto \boldsymbol{x}(P \oplus Q)$ and xDBL : $\boldsymbol{x}(P) \mapsto \boldsymbol{x}([2] P)$
- The Montgomery ladder "differential addition chain" will provide a way to compute $\boldsymbol{x}([m] P)$ using only xADDs and xDBLs

The Montgomery ladder for [$m]_{*}$

pscalarm(m, $n, x(P))$
\{

$$
\begin{aligned}
& A 0=x(0) ; A 1=x(P) ; \\
& \text { for (} \mathrm{i}=\mathrm{n}-1 \text {; } \mathrm{i}>=0 \text {; } \mathrm{i}-- \text {) } \\
& \text { (T0, T1) }=\operatorname{cswap}(m i, A 0, A 1) \text {; } \\
& \text { (T0, T1) }=(x D B L(T 0), x A D D(T 0, T 1, \\
& \hookrightarrow \mathrm{x}(\mathrm{P})) \text {); // or a fused }{ }^{-} x D B L A D D^{\prime \prime} \\
& \text { (A0, A1) }=\operatorname{cswap}(\mathrm{mi}, \mathrm{~T} 0, \mathrm{~T} 1) \text {; } \\
& \text { return AO; }
\end{aligned}
$$

\}

The Montgomery ladder for $[\mathrm{m}]_{*}$ (cont.)

Why does this work?

- xADD needs as input $\boldsymbol{x}(P), \boldsymbol{x}(Q), \boldsymbol{x}(P \ominus Q)$
- But we have already seen that in the original ladder $A_{1} \ominus A_{0}$ is always equal to P
\downarrow Here: $A_{1} \ominus A_{0}=\boldsymbol{x}(P)$
- Since $T_{0} \ominus T_{1}=A_{1} \ominus A_{0}$ or $A_{0} \ominus A_{1}$, it is equal to $\oplus P$ (in the original ladder)
- So $\boldsymbol{x}\left(T_{0} \ominus T_{1}\right)=\boldsymbol{x}(P)$
- So here, $T_{0} \ominus T_{1}=\boldsymbol{x}(P)$ directly

x-line arithmetic on Montgomery curves

We still need to define explicit formulas for xADD and xDBL. We will show that for curves given in a Montgomery model, which (along with the above ladder) were originally introduced to speed up ECM factorisation (formulas also exist for the more general Weierstraß model, but they're slower)

A Montgomery curve E / \mathbb{F}_{q} is given by the equation $B Y^{2} Z=X^{3}+A X^{2} Z+X Z^{2}$ where $B, A \pm 2 \neq 0$. One can then show the formulas:
$\operatorname{xADD}\left(\left(X_{P}: Z_{P}\right),\left(X_{Q}: Z_{Q}\right),\left(X_{P \ominus Q}: Z_{P \ominus Q}\right)\right)=$
$\left(Z_{P \ominus Q}\left(S_{P} T_{Q}+T_{P} S_{Q}\right)^{2}: X_{P \ominus Q}\left(S_{P} T_{Q}-T_{P} S_{Q}\right)^{2}\right)$, where $S_{\alpha}:=X_{\alpha}-Z_{\alpha}, T_{\alpha}:=X_{\alpha}+Z_{\alpha} \rightsquigarrow$ does not depend on A nor B !
$\operatorname{xDBL}(X: Z)=(U V: W(U+C W))$, where $U:=(X+Z)^{2}$,
$V:=(X-Z)^{2}, w:=R-S, C:=(A-2) / 4 \rightsquigarrow$ only depends on $A!$
Elliptic curve cryptography
2020-11-03/13

x-only Diffie-Hellman

We can now do elliptic-curve Diffie-Hellman in two ways

- Take $P \in E\left(\mathbb{F}_{q}\right), \mathcal{A}$ computes and sends $[a] P$, receives $[b] P$ and computes $[a b] P$ (Working in $E\left(\mathbb{F}_{q}\right)$)
- Take $\boldsymbol{x}(P), P \in E\left(\mathbb{F}_{q}\right), \mathcal{A}$ computes and sends $[a]_{*} P$, receives $[b]_{*} P$ and computes $[a b]_{*} P$ (Working in $E\left(\mathbb{F}_{q}\right) /\langle\ominus\rangle$)
In both cases, we must check that P lies on $E\left(\mathbb{F}_{q}\right)(\rightsquigarrow$ possible problems if soemone is lying/injected a fault/made a mistake... Also somewhat expensive)
- Can we define another variant s.t. no check is necessary?

(Quadratic) twists of Montgomery curves

Let $E / \mathbb{F}_{q}: B Y^{2} Z=X^{3}+A X^{2} Z+X Z^{2}$,
$E^{\prime} / \mathbb{F}_{q}: B^{\prime} Y^{2} Z=X^{3}+A X^{2} Z+X Z^{2}$, be two Montgomery curves;
E and E^{\prime} are isomorphic via $(X, Y) \mapsto\left(X, \sqrt{B / B^{\prime} Y}\right)$

- If B / B^{\prime} is a square in $\mathbb{F}_{q}\left(\square_{\mathbb{F}_{q}}\left(B / B^{\prime}\right)\right), E$ and E^{\prime} are isomorphic ("the same") over \mathbb{F}_{q}
- Otherwise, $\square_{\mathbb{F}_{q^{2}}}\left(B / B^{\prime}\right)$ since $\mathbb{F}_{q^{2}} \cong \mathbb{F}_{q}[\sqrt{R}]=\mathbb{F}_{q} /\left\langle X^{2}-R\right\rangle$ for any non-square R in \mathbb{F}_{q}, so E and E^{\prime} are isomorphic over $\mathbb{F}_{q^{2}}$, but not ("are different") over \mathbb{F}_{q}, and E^{\prime} is said to be a quadratic twist of E
- Also $\neg \square_{\mathbb{F}_{q}}\left(B / B^{\prime}\right)$ iff. exactly one of B or B^{\prime} is a non-square. (If neither is a square and $p:=\operatorname{char}\left(\mathbb{F}_{q}\right), b:=\left(\frac{N(B)}{p}\right)=-1$, $b^{\prime}:=\left(\frac{\mathrm{N}\left(1 / B^{\prime}\right)}{p}\right)=\left(\frac{\mathrm{N}\left(B^{\prime}\right)}{p}\right)=-1$, and $\left(\frac{\mathrm{N}\left(B / B^{\prime}\right)}{p}\right)=b b^{\prime}=1$ since both the field norm and the Legendre symbol are multiplicative) (So all quadratic twists of E are \mathbb{F}_{q}-isomorphic)

Quadratic twists (cont.)

Now let $E / \mathbb{F}_{q}: B \ldots, E^{\prime} / \mathbb{F}_{q}: B^{\prime} \ldots$ be a curve and "its" quadratic twist (unique up to iso.) and $x \in \mathbb{F}_{q}$, then $\exists P \in E\left(\mathbb{F}_{q}\right)$ or $E^{\prime}\left(\mathbb{F}_{q}\right)$ s.t. $\boldsymbol{x}(P)=x$. Proof (affine case):

- Let $x^{\prime}:=x^{3}+A x^{2}+x$, and assume w.l.o.g. that $\square_{\mathbb{F}_{q}}(B)$, $\neg \square_{\mathbb{F}_{q}}\left(B^{\prime}\right)$
- Then if $\square_{\mathbb{F}_{q}}\left(x^{\prime}\right), \square_{\mathbb{F}_{q}}\left(x^{\prime} / B\right)$ and $\left(x, \sqrt{x^{\prime} / B}\right) \in E\left(\mathbb{F}_{q}\right)$
- Else $\square_{\mathbb{F}_{q}}\left(x^{\prime} / B^{\prime}\right)$ and $\left(x, \sqrt{x^{\prime} / B^{\prime}}\right) \in E^{\prime}\left(\mathbb{F}_{q}\right)$

Exercice: show that this would not be true if E and E^{\prime} were \mathbb{F}_{q}-isomorphic

Back to x-only Diffie-Hellman

We now have a strategy for avoiding point validation in (x-only) ECDH:

- Find a curve pair $\left(E / \mathbb{F}_{q}, E^{\prime} / \mathbb{F}_{q}\right)$ where E^{\prime} is a quadratic twist of E, and the DLP/CDHP is hard on both of them (in that case we say that E is twist-secure)
- Pick $x \in \mathbb{F}_{q}, \mathcal{A}$ computes and sends $[a]_{*} P$, receives $[b]_{*} P$ and computes $[a b]_{*} P$, where P is implicitly defined by x and is on $E\left(\mathbb{F}_{q}\right)$ or $E^{\prime}\left(\mathbb{F}_{q}\right)$ (Working in $E\left(\mathbb{F}_{q}\right) /\langle\ominus\rangle \cup E^{\prime}\left(\mathbb{F}_{q}\right) /\langle\ominus\rangle$) (One must still check that $\langle P\rangle$ for the induced P has a large order, and sometimes one may require that this group's order is prime, which is not guaranteed here)
\rightsquigarrow The basis of Curve25519 software (Bernstein, 2006)

