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Motivation

DLP

Recall that given a group G = (g) of prime order N, the discrete
logarithm problem in G asks that given (g, g*) with

x < [0, N — 1], find x

If we know a group where the DLP is hard, we can do:
» Public key-exchange (Diffie-Hellman)
» Signatures (Schnorr; DSA...)
» (Semi-Homomorphic) public-key encryption (ElGamal)

In a generic group model, solving a DLP instance requires expected
~ v/N group operations (Shoup, 1997)
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Motivation (cont.): DLP/CDHP/DDHP precisions

» Actual cryptosystems rarely need a hard DLP per se, rather
» A hard CDHP (e.g. in Diffie-Hellman)
» A hard DDHP (e.g. in textbook ElGamal)

» But it is possible to solve a DDHP by solving a CDHP and to
solve a CDHP by solving a DLP

» In most groups, the hardness of the DLP gives a good
indication of the hardness of CDHP and DDHP (but there are
counter-examples, cf. TD)
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Motivation (cont.)

» Typical instantiation for G: take FX, where p is a “large”
prime
> It may also be fine to work with non-prime fields of
medium /large characteristic
» But IF; is NOT a generic group. DLP is much easier!
» The Number field sieve (NFS) has subexponential "L,(1/3)"
complexity
> Ly(a,c) :=exp((c + o(1))(log x)*(log log x)*~%)
» E.g. a DLOG computation with p ~ 27 took 3200
core-years << 23% group operations (Boudot et al., 2020)

» Even better NFS variants exist in fields of small characteristic
~ a recent record in characteristic two is a DLOG
computation in Fyss0, taking 2900 core-years (Granger et al.,
2019)
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Exeunt multiplicative groups, enter elliptic curves

v

A prime-ordered group of points on a (well-chosen) elliptic
curve is a good cryptographic approximation of a generic

group
» = the best-known algorithms are generic (e.g. Pollard p,
Pollard kangaroos < cf. TP#3)

» For n-bit security, pick a prime-ordered group of 22" elements;
double security = double the bitlength of the order; gives
scalability

» What are these groups like?
» How do you compute in them?

» Can you do fancy stuff?
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First: affine/projective spaces

» The points in the n-dimensional affine space A"(FFy) are
n-tuples of I, elements

» The points in the n-dimensional projective space P"(FF,) are
equivalence classes over n + 1-tuples of g elements, not all
equal to zero, where (Xp :...: Xp) ~ (AXo 1 ... AXy),
AeFy

» Example: (2:1:0) and (4:2:0) define the same point (~

doesn’'t make sense to say that Xo = 2, but saying that

Xo =0 or Xp/X; = 2 does)

(In the following, we only consider planes, with affine points

(x,y) and projective points (X : Y : Z))

v
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Affine/projective spaces (cont.)

» A2 is included in P? via (typically) (x,y) — (X : Y : 1)
» The inverse mapping is (X : Y :Z)— (X/Z,Y/Z), only
defined if Z#0

» The projective points of the form (X : Y : 0) are in the
hyperplane at infinity (here this is a line)
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Elliptic curves

An elliptic curve E/IFq can be defined via a “short WeierstraB”
(affine) model: it is the set of points verifying y? = x3 4 ax + b,
a, b € Iy under the non-singularity condition 433 + 27> £0

One often works projectively, using (x,y) — (X/Z,Y/Z) (and
multiplying everything by Z3 to clear the denominators), giving the
projective model Y?Z = X3 4 aXZ? + bZ3

» Such a curve has a unique point at infinity: Og = (0:1:0)
(or simply O; also recall that (0: 2 :0) is the same point)

» We are usually only interested in the points lying in g, the
[Fq-rational poins of E, written E(FF)

» There may be different models for the same elliptic curve (&
different formulas, up to changes of coordinates)
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Group orders of elliptic curves

We will shortly define a group law over E(FFg); for the DLP to be
hard therein we need # E(IF,) to be large enough — how do you
pick E? F?

» By Hasse's theorem, if E is defined over Fg,
#EFg) =q+1—twith [t <2,/g
So to get “n-bit” security, pick g ~ 22"

v

Not much restriction on the exact field choice ~» can use one
with efficient arithmetic such as Fo127_; or Foas_ 5244

(Then pick E and check that # E(Fg) has a large prime
factor, etc.)

v

v

v

(“Point counting” is not trivial, but it is reasonably efficient)
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The group law for points of an E.C.

One can define a group over the (Fg-rational) points of an E.C.,
best described geometrically. We first define and describe the
negation © of a point

» E.C. have a natural symmetry along the X-axis: if
P=(Xp:Yp:1)€E, thensois (Xp:—Yp:1) ~> use this
to define &P as (Xp: —Yp : 1)

» The point at infinity (0:1:0) is reflected to (0: —1: 0),
which is itself, so ©0 = O < this is going to be the neutral
element

» A projective equation for the vertical line “x = a" is X = aZ,
if such a line intersects E, it does so in O (since 0 = a0), and
possibly in (a: £3 : 1) where 32 = a3 + aa + b
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The group law (cont.)

Theorem: A line (a degree-one equation) intersects E (a
degree-three equation) in three points, counted with multiplicity
» So knowing P, @, one can determine the unique other point
R of E on the line going through P and Q (and more: if P
and Q are in E(Fy), so will be R)
» Let P, Q, R € E be colinear; one defines the group law & by
P ® Q = ©R, for which O is the identity
Why is this a group law over E (or more useful for us, E(Fg))?
» Internal-law, commutativity, existence of unique inverse and
neutral element come from the above algebraic-geometry
arguments

» The harder axiom is associativity... won't do it here...
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Discrete logarithms in E.C.

v

The group of points in an elliptic curve uses additive notation
So the DLOG of Q € (P) is ms.t. [m]P = Q, where
[MP=P®...& P m times

[m]P can be computed in time logarithmic in m using a
“double-and-add” (= “square-and-multiply) process

v

v

v

So we (obviously) need to be able to compute P & P and
P& Q
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How to compute in the group?

Let P, Q be in E(FFy), how do you compute P & Q in practice?
» Elementary if Por Q is O, or P =6Q
» Need explicit formulas when P = Q # O (doubling) and
O # P # (©)Q # O (regular addition)
(Back to the) Affine case, example when P # Q:
Determine the equation y = Ax + v of the line passing
through P and Q
Eg. A= (yo—yp)/(xo = xp)i v = (vaxp — ypxq)/(xp — Xq)
Solve (x — xp)(x — x@)(x — xg) = (x® + ax + b) — (Ax + v)?
for xp = xp = \2— xp —xq (i.e. the point is either P, Q or R,
and it lies both on the E.C. and on the line between P and Q)
Deduce yr as —(Axg + 1)

The case P = Q is obtained “similarly” by differentiating E to find
the slope of the tangent at P
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More on group laws

The implementation of the group laws in ECC is important for:
» Performance (obvs.)

> Try also to optimise P & Q when P is fixed; tripling [3]P (for
doubling/tripling-add chains)...

» Security; need formulas that:

> are always correct (not so easy, actually), even on (possibly)
adversially chosen inputs
> take uniform time to be computed (no special cases)

Some options:
» Use projective coordinates ~~ get rid of costly field inversions

» (Possibly) use alternative models for E ~~ different formulas
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Example: Twisted Edwards models

Define E/F, via ax? + y? = 1 + dx2y?; the group law on E(Fy) is
completely defined (e.g. for doubling, simply use xp = x,
yp = yq in the below!) by

XpyQ T YPXQ = YPYyQ — axpXq )

xp,yp) D (XQ, = ’
( y ) ( Q }/Q) <1+dXPXQ}/P}/Q ]_*dXPXQ_)/P)/Q

and &(x,y) = (—x,y), and (0,1) is the neutral element
» In practice, use a variant with projective coordinates

» One may use such a curve model even if E was initially defined
with a WeierstraB equation (warning: restrictions apply)
Another well-known model is the one of Montgomery curves,
defined (in the affine case) via by? = x3 + ax? + x (more about
that one later)
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Caveat: models restrictions

» Not all models are equivalent in terms of the curves they may
define
» For instance, if # E(Fq) is not divisible by 4, then E does not
have an Edwards or Montgomery model
> (Let p be the largest prime that divides # E(F,) = hp; we say
that E(IFq) has cofactor h)
» But the curves used in some ECC standards are s.t. # E(Fg)

is prime, i.e. have cofactor 1 ~~ cannot use the “nicer”
models!

> (We still know complete formulas, cf. Renes et al., EC 2016,
but they're slower than for e.g. Edwards curves)

(For more about models, formulas... cf. the Explicit-Formulas
Database: https://hyperelliptic.org/EFD/)
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Curves for multi-dimensional scalar multiplication

Recall that we are eventually interested in computing [m]P s.t. the
associated DLP is hard ~» m is large, e.g. 256 bits

» One way to speed-up this computation (beyond fast curve
formulas, etc.) is to use a curve with one (or sometimes even
more) efficiently computable endomorphism
¢: E(Fq) = E(Fq) s.t. the action of ¢ corresponds to the
multiplication by a large fixed scalar (an eigenvalue) A, i.e.
VP e E(Fg), o(P)=[A\P

» To compute [m]P, decompose m into (a1, a2) s.t.

[m]P = [a1]P @ [a2] ¢(P) (i.e. take a1, a2 s.t. a1+ Aax =m
mod N, where N = #(P)) AND a1, a» <= /m (typically
computed using lattice reduction)
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Curves for multi-dimensional scalar mult. (cont.)

» Usefulness: one can compute [a1]P @ [a2] ¢(P) faster than by
computing [a1]P and [a2] ¢(P) separately (which would cost
~ the same as computing [m]P)

> Ex.: for the “FourQ" curve (Costello & Longa, 2015) which
uses 4-dimensional decomposition, using endomorphisms gives
a ~ 1.8x speed-up
» But: endomorphism-accelerated curves are harder to find, may
have more structure, and may be harder to implement than
regular ones
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Why is multi-dimensional scalar mult. faster?

Say we want to compute [9]P & [12] ¢(P)
» Naive (non constant-time): [8]P @ P @ [8] ¢(P) @ [4] ¢(P) ~~
6 doubles, 3 adds
» Idea: precompute the points P, ¢(P), P @ ¢(P) and share the
accumulator, that is:
A:=0
A=A (P& ¢(P)) =P ¢(P) (bit 30f9 & 121s 1)
A:=[2]JA=[2]P & [2] ¢(P)
A:=A®¢(P)=[2]P & [3] 6(P) (bit 2 of 9 is 0, bit 2 of 12 is

1)
A:=[2]A = [4]P © [6] 4(P)
@ A:=A® O (do nothing: bit 1 of 9 & 12 is 0)
A:=[2]A=[8]P & [12] ¢(P)
B A=AdP=[9P&[12]¢(P) (bit 0 of 9is 1, bit 0 of 12 is 0)
~+ 3 doubles, 3 adds
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Actually constant-time scalar multiplication

» When computing [m]P, it is important not to leak anything
about m

» ...for instance its Hamming weight (leaked in the previous
example via e.g. timing or DPA)

» We need a way to compute [m]P in (cryptographic)
constant-time
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The Montgomery ladder

We define the following function, due to Montgomery
scalarm(m, n, P) // n1::§:£;}nn2i

{
A0 = 0; Al = P;
for (i =n-1; i >= 0; i--)
mi = (m > n) & 1;
if (mi == 0)
(AO,A1) = ([2]A0, AO + Al);
< // simultaneous
else
(A1,A0) = ([2]A1, AO + A1);
return AO;
}
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The Montgomery ladder (cont.)

Why does this work?
» We have the invariant Ay © Ap = P
> Initially true
» Then (first branch): Aj = [2]Ao = [2](A1 © P),
Al=AdA =(AlcP)d A =[2JA16 P
> And (second branch): A = [2]A; = [2](A¢ @ P),
A=A A=A DA SP=2A aP
> We also have that at the end of step i, Ag = [m/2/]P (and
thence A; = [m/2' + 1]P)
> Initially true
» Then (first branch): m; =0 — m/2' =2 x (m/2/*!) and
Ay = [21A0 = [2]([m/2"*1]P) = [m/2']P
» And (second branch): m; =1 — m/2 =2 x (m/2"*1) + 1 and
A=Ay @ Ay = [m/2H P @ [m/2* +1]P = [m/2]]P
» We return the last value Ay = [m/1]P
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The Montgomery ladder (cont.)

» Constant-timedness: the two branches are exactly the same
up to the role of Ay/A;

» But we dislike branches in cryptography...

» So use a (constant-time) conditional swap instead
(TO, T1) cswap(mi, AO, Al);
(TO, T1) = ([2]TO, TO + T1);
(A0, A1) cswap(mi, TO, T1);

» ...will be truly constant-time (as long as the group formulas
are, cf. above)
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A constant-time conditional swap

cswap(b,n,x,y) // z, y are n-bit strings to swap tf
—~ the btt b == 1

{
bn = broadcast(b, n); // bn = bbbbb...bbbb
t=b& (x " y);
X =3x " t;
y=y ot
return (x,y);
}

On two's complement architecture, one can implement broadcast
onwordsas (b ~ 1) - 1
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Going beyond groups

In a Diffie-Hellman key-exchange, the group is useful to get:
» commutativity ~» correctness of the protocol
» security (i.e. CDHP is hard, ~ DLP is hard)
But we aren't that much interested in the group elements
themselves
» Recall that for P € E(F4)\{O}, xp € Fq determines (P,&P),
i.e. "most” of the point
» Can we speed-up computations/improve resilience by
“simplifying” P?
» An idea: why not just working with (Xp : Zp), i.e. working on
E(Fq)/(0) = PY(Fq)?
> Wedefinex:E—HP’l, P:(Xp: YPZZP)H(XPZZP)

Elliptic curve cryptography 2020-11-03/13 26/34



Pseudo-operations on E

We can define [m], : x(P) — x([m]P), but how do we compute it?

» Observe that x(P), x(Q) determine both
x(PoQ)=x(6Po Q) and x(PS Q) =x(cP & Q)

» We can define xADD : (x(P), x(Q),x(P© Q)) — x(P & Q)
and xDBL : x(P) — x([2]P)

» The Montgomery ladder “differential addition chain” will
provide a way to compute x([m]P) using only xADDs and
xDBLs
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The Montgomery ladder for [m].

pscalarm(m, n, x(P))

{
A0 = x(0); A1l = x(P);
for (i =n-1; i >= 0; i--)
(TO, T1) = cswap(mi, AO, Al);
(TO, T1) = (xDBL(TO), xADD(TO, T1,
~ x(P))); // or a fused “zDBLADD''
(A0, A1) = cswap(mi, TO, T1);
return AO;
}
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The Montgomery ladder for [m], (cont.)

Why does this work?
» xADD needs as input x(P), x(Q), x(P & Q)

» But we have already seen that in the original ladder A; & Ag
is always equal to P

> Here: A; © Ay = x(P)

» Since To© T1 = A1 © Ag or Ag © Ay, it is equal to @P (in the
original ladder)

» So x(To© T1) = x(P)
» So here, To © T1 = x(P) directly
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x-line arithmetic on Montgomery curves

We still need to define explicit formulas for xADD and xDBL. We
will show that for curves given in a Montgomery model, which
(along with the above ladder) were originally introduced to speed
up ECM factorisation (formulas also exist for the more general
WeierstraB model, but they're slower)

A Montgomery curve E/FFg is given by the equation
BY?Z = X3 4+ AX?Z + XZ? where B,A+2 # 0. One can then
show the formulas:

xADD((Xp : Zp), (Xq : £q), (Xpaq : Zpagq)) =
(ZPGQ(SP TQ + TPSQ)2 : XP@Q(SP TQ — TPSQ)Z), where
Sa = Xa = Za, Ta := Xa + Zo ~> does not depend on A nor B!

XDBL(X : Z) = (UV : W(U =+ CW)), where U := (X + Z)?,
V.= (X—-2Z)?2 W:=R-S, C:=(A—2)/4 ~> only depends on Al
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x-only Diffie-Hellman

We can now do elliptic-curve Diffie-Hellman in two ways
» Take P € E(F,), A computes and sends [a]P, receives [b]P
and computes [ab]P (Working in E(Fg))
» Take x(P), P € E(Fq), A computes and sends [a]. P, receives
[b].P and computes [ab],P (Working in E(Fq)/(©))
In both cases, we must check that P lies on E(Fg) (~ possible

problems if soemone is lying/injected a fault/made a mistake...
Also somewhat expensive)

» Can we define another variant s.t. no check is necessary?
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(Quadratic) twists of Montgomery curves

Let E/Fq : BY?Z = X3 + AX?Z + XZ?,

E'/F,:B'Y?Z = X3+ AX?Z + X22 be two Montgomery curves;

E and E’ are isomorphic via (X, Y) — (X,/B/B'Y)

» If B/B' is a square in Fg (D]Fq(B/B’)), E and E’ are
isomorphic (“the same") over F,

» Otherwise, Op 2(B’/B ) since F 2 = Fg[VR] =Fq/(X? — R)
for any non-square R in Fg, so E and E’ are isomorphic over
F 42, but not (“are different”) over Fy, and E’ is said to be a
quadratic twist of E

> Also =g (B/B') iff. exactly one of B or B’ is a non-square.
(If neither is a square and p := char(Fyq), b:= <@) =1,
b = (%“3/)) = (%B/)) = —1, and (N(BT/BI)) = bb’ =1 since both the
field norm and the Legendre symbol are multiplicative) (So all quadratic twists

of E are Fq—isomorphic)
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Quadratic twists (cont.)

Now let E/Fq: B..., E'/Fq: B'... be a curve and “its” quadratic
twist (unique up to iso.) and x € Fy, then 3P € E(F,) or E'(Fy)
s.t. x(P) = x. Proof (affine case):

> Let x' := x> + Ax? + x, and assume w.l.o.g. that Oy, (B),

ﬁDFq(B/)

> Then if O, (x'), Or,(x'/B) and (x, /X'/B) € E(F,)

> Else O, (x'/B’) and (x,\/x'/B’) € E'(Fq)
Exercice: show that this would not be true if E and E’ were
IF 4-isomorphic
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Back to x-only Diffie-Hellman

We now have a strategy for avoiding point validation in (x-only)
ECDH:
» Find a curve pair (E/Fq, E'/F4) where E’ is a quadratic twist
of E, and the DLP/CDHP is hard on both of them (in that
case we say that E is twist-secure)

» Pick x € Fg, A computes and sends [a]. P, receives [b].P and
computes [ab].P, where P is implicitly defined by x and is on
E(F,) or E'(Fy) (Working in E(Fq)/(S) U E'(Fq)/(&)) (oOne
must still check that (P) for the induced P has a large order, and sometimes

one may require that this group’s order is prime, which is not guaranteed here)

~~ The basis of Curve25519 software (Bernstein, 2006)
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