
Block cipher design ∼ AES 2020–10–06 1/19

Crypto Engineering ’20
]

Block cipher design ∼ AES

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2020–10–06

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html


Block cipher design ∼ AES 2020–10–06 2/19

What’s up?

From the previous lectures, we know (somehow) how to provide:

▸ Confidentiality/Semantic security of a message

▸ Authenticity of communications

▸ Integrity

if given access to the right primitives. But:

How do you design primitives?

Today’s focus: block ciphers → AES



Block cipher design ∼ AES 2020–10–06 3/19

Advanced Encryption Standard: AES

The AES is:

▸ A family of three block ciphers of block size 128 bits; key size
128, 192 or 256 bits

▸ Designed in ’98 by Daemen and Rijmen

▸ Winner of an academic competition run by the (American)
NIST

▸ Standardized in 2001 by the NIST



Block cipher design ∼ AES 2020–10–06 4/19

First things first

Building a BC, general objectives:

▸ Be secure

▸ Be efficient

▸ Be easy to implement

▸ Be versatile

General strategy:

▸ Use small/simple building blocks

▸ Use an iterative structure



Block cipher design ∼ AES 2020–10–06 5/19

Justifying the strategy

▸ It is hard/impossible(?) to define a BC in a single operation

▸ Complex operations are expensive

▸ The ability to do fine-tuning is useful

⇒
Most BCs are based on iterations of a small set of simple
operations. Typically:

▸ Modular addition + bitwise XOR + rotations (ARX)

▸ Lookup tables

▸ Simple (non-)linear functions

▸ Bit permutations



Block cipher design ∼ AES 2020–10–06 6/19

Iterative structure: details

BCs usually use:

▸ A round function ρ ∶ {0,1}κ′ × {0,1}n → {0,1}n
▸ Takes as input a round key and an “intermediate state” that

gets updated

▸ A key schedule σ ∶ {0,1}κ ×N → {0,1}κ′
▸ Takes as input a master key and a round number and returns a

round key

Resulting structure ↝ blackboard

Rationale:

▸ It is “easy” to define a small round function, a key schedule

▸ More rounds ⇒ better security (mostly true)



Block cipher design ∼ AES 2020–10–06 7/19

A particular round structure: SPNs

SPN: Substitution-Permutation Networks. Build a round function
from:

▸ Non-linear (over F2) Substitution boxes (S-boxes): locally
break any exploitable structure

▸ Linear (ditto) permutations or more generally, matrices:
ensure that local changes spread globally

Many tradeoffs possible for the size/quality of components

Sometimes traced back (?) to Shannon’s idea of composing
“confusion” and “diffusion”



Block cipher design ∼ AES 2020–10–06 8/19

SPN as in the AES

▸ Use a square state of 16 = 4 × 4 bytes

▸ S-boxes are over 8 bits (“SubBytes”)
▸ Permutation is the composition of

▸ Inter-column light diffusion (“ShiftRow”)
▸ Column-wise heavy diffusion (“MixColumn”)

▸ The round key is just XORed to the entire state
(“AddRoundKey”) (no details about the rest today)

▸ Full structure ↝ blackboard

Remark: This is a rather heavy round function (only ten rounds for
AES-128)



Block cipher design ∼ AES 2020–10–06 9/19

Intermission: PRESENT round function

Some (other) SPNs have a very simple round function. Ex.
PRESENT:

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

ki

ki+1



Block cipher design ∼ AES 2020–10–06 10/19

Back to AES: more details

SubBytes:

▸ The S-box S is well-chosen to provide very strong protection
against differential and linear cryptanalysis

▸ It has a strong algebraic structure over F28 , masked by an
affine mapping over F2

MixColumn:

▸ Defined as a matrix-vector multiplication over F4
28

▸ The matrix is the redundancy part of an [8,4,5]F28 linear
code, that is maximum distance separable (MDS)



Block cipher design ∼ AES 2020–10–06 11/19

F28 arithmetic

▸ MixColumn requires operations over F28 (the finite field with
256 elements)

▸ The representation of F28 used in AES is as
F2[X ]/⟨X 8 +X 4 +X 3 +X + 1⟩

▸ Using “integer notation”, the MixColumn matrix M is then:

⎛
⎜⎜⎜
⎝

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎞
⎟⎟⎟
⎠



Block cipher design ∼ AES 2020–10–06 12/19

Brief differential focus example

Why this choice for the matrix (/S-box)?
Important differential properties:

▸ For all ∆in,∆out ∈ F8
2,

#{x ∈ F8
2 s.t. S(x) ⊕ S(x ⊕∆in) = ∆out} ∈ {0,2,4}

▸ So max(∆in,∆out)
Pr[S(x) ⊕ S(x ⊕∆in) = ∆out ∶ x

$←Ð F8
2] = 2−6

▸ ↝ “It is hard to control the behaviour of input differences to
an S-box”

▸ minx⃗≠0⃗ wt(x⃗) +wt(M ⋅ x⃗) = 5

▸ ↝ “It is hard to restrict differences to a few S-boxes”



Block cipher design ∼ AES 2020–10–06 13/19

AES(-128): how secure?

▸ Many attacks exist against the AES
▸ Square, Impossible differential, MiTM, Yoyo, etc.

▸ Some are very efficient but only work on a few rounds (cf.
TP)

▸ No key-recovery attack on 7/10 rounds takes time < 2100

▸ Some better attacks exist in very strong models (not a
problem)

▸ Still today, 10 rounds offer a good security/efficiency tradeoff



Block cipher design ∼ AES 2020–10–06 14/19

What about implementation now?

Naive needs:

▸ ShiftRow: cabling/moves

▸ MixColumn: multiplication by constants in F28

▸ SubBytes: table lookups



Block cipher design ∼ AES 2020–10–06 15/19

Implementation (cont.)

Naive MixColumn (xtime) issues:

▸ Not efficient

▸ Leaks information about inputs

▸ ↝ Can do better

Common AES implementation techniques:

▸ All by table lookups

▸ Block-wise vectorization w/ shuffles; very nice! (Hamburg,
2009)

▸ Parallel vectorization/“bitslicing”

▸ Use hardware instructions (’cause it’s already implemented...)



Block cipher design ∼ AES 2020–10–06 16/19

Implementation: always looking up

Table lookups details:

▸ Not the best approach, but pretty easy

▸ Idea: α⃗ ⋅A = ∑i α⃗i ⋅Ai

▸ Use this to compute M ⋅ x⃗ = x⃗ t ⋅Mt

▸ For every row Mt
i , for every α ∈ F28 , precompute

T[i][α] = αMt
i

▸ Requires 256 ⋅ 4 ⋅ 4 = 4kB of static data
▸ Then compute MixColumn(x) as

T[0][x[0]] ^ T[1][x[1]] ^ T[2][x[2]] ^ T[3][x[3]]

▸ Optimizations:
▸ Fold in the S-box calls into T
▸ Possible tradeoff: use the (circulant) structure of the matrix to

store only one row



Block cipher design ∼ AES 2020–10–06 17/19

Table drawbacks

Table implementations are “classical”, but they

▸ Need memory (not the best for constraint devices)

▸ May leak information (via e.g. cache attacks)

Cache attacks main observations:

▸ Table accesses depend on secret data

▸ Access times may depend on micro-architectural effects (e.g.
presence/absence of data in cache)

▸ ↝ Can learn key material by measuring running time

In some context, additional protection against other side-channel
attacks may also be needed! (cf. ϕ security)



Block cipher design ∼ AES 2020–10–06 18/19

AES extensions

The AES inspired many later designs, e.g.:

▸ LED (Guo et al., 2011; lightweight variant)

▸ Kiasu (Jean et al., 2014; tweakable variant)

▸ AESQ (Biryukov & Khovratovich, 2014; wide permutation
variant)

▸ Etc.

But the original cipher is still up to date → the sensible default
choice for a block cipher



Block cipher design ∼ AES 2020–10–06 19/19

Light summary

Symmetric encryption relies on:

▸ Primitives ((Tweakable) block ciphers, MACs, hash functions,
permputations, ...)

▸ Operating modes

▸ Everything has to be implemented at some point (!)

⇒ Many things to study; many things that can go wrong


