Crypto Engineering (GBX9SY03)
Memoryless generic discrete logarithm computation in an
interval using kangaroos

2019-12-20

Grading

This assignment is graded as part of the contrdle continu. You must send a written report
(in a portable format) detailing your answers to the questions, and the corresponding
source code, including all tests, with compilation and execution instructions by
2020-01-17T18:00+0100) to:

pierre.karpmanQuniv-grenoble-alpes.fr.

Working in teams of two is allowed and encouraged (but not mandatory), in which case
only one report needs to be sent, with the name of both students clearly mentioned.

Introduction

The goal of this exercise is to write a simple implementation of Pollard’s Kangaroo algo-
rithm to compute the discrete logarithm of a group element whose exponent is known to
lie in a “small” interval, without using (much) memory.

Let G = (g) be a finite group of order N, and h = g%, a € [0, W], W < N, be an
element for which we want to compute the discrete logarithm a. The algorithm is based on
the sequence of jumps of two kangaroos: a tame kangaroo, that always knows the discrete
logarithm of the element it lands on; and a wild kangaroo, that can only remember the
jumps from its starting point.

Both kangaroos jump deterministically and identically from one group element to an-
other; in other words, both use the same jump map J : G — G. They also regularly lay
traps to try to catch each other, and it is clear that if one jumps on an element already
visited by the other, the former will eventually get caught by a trap of the latter (in other
words, barring a full cycle in the entire group, a kangaroo cannot get caught as long as it
is leading (i.e. has the largest logarithm)). When this happens, one has in fact recovered
enough information to compute the discrete logarithm of h.

In more details and using typical parameters, one does the following.

— Split G into k =~ log(W)/2 subsets S; of equal size; pick k exponents e; s.t. their
average 1/k Z?:l ej = VW/2; define J from the k partial maps J; : S; = G,
T xg®.


mailto:pierre.karpman@univ-grenoble-alpes.fr

https://www-1jk.imag.fr/membres/Pierre.Karpman/cry_eng2019_tp_roos.pdf

— The tame kangaroo’s sequence (z,,) is defined as zo = ¢g/""/2! (i.e. the middle of the
interval); x;11 = J(z;). Notice that at any time the discrete logarithm b; of z; = ¢
is known.

— The wild kangaroo’s sequence (y,,) is defined as yo = h; yi+1 = J(y;). Notice that
at any time, one can write y; as hg“ where ¢; is known.

— Define D : G — {0,1} so that Pr[D(z) = 1 : 2 < G] ~ log(W)/vW, which returns
1 if its argument is a distinguished element.

— Anytime a tame (resp. wild) kangaroo lands on a distinguished element z; (resp.
yi), it lays a trap by recording (x;,b;) (resp. (yi,¢;)) in an efficient data structure
for sets. However, if a trap (y;,c;) (resp. (xj,b;)) was already present, it instead
gets trapped and returns the discrete logarithm |b; — ¢;| (resp. |b; — ¢4).

For the above choices for k and D, the heuristic time complexity of this algorithm is
O(vW) group operations, while the memory complexity is negligible; we refer the reader
to | , §14.5] for an analysis.

The objective is now to implement this algorithm to search for logarithms in [0, 254 —1]

in the subgroup G < IFQXHL&,) of prime order 989008925435205262577237396041921 =~
9109.6

Preparatory work

The file https://www-1jk.imag.fr/membres/Pierre.Karpman/mull11585.h implements
the group law of F;115_85, where elements are represented as integers thanks to the union
type:

typedef union

{
unsigned __intl128 s;
uint64_t t[2];

} num128;

A variable num128 x can be accessed either as an unsigned 128-bit integer (which isn’t
exactly a standard type) as x.s or as the two quadwords x.t[0], x.t[1] it is made of
(typically in little endian).

Question 1
What would be the cost of a generic discrete logarithm computation in the full group G?
Would that be tractable?

Question 2

Write a function num128 gexp(uint64_t x) that implements the exponentiation map
[0,264 1] — G, 2 — ¢® where g, represented by the integer 4398046511104, is a generator
of G.

You may test your function on the few following values:

— ¢®7 = 0x42F953471EDC0O0840EE23EECF 13E4


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2019_tp_roos.pdf
https://www-ljk.imag.fr/membres/Pierre.Karpman/mul11585.h

https://www-1jk.imag.fr/membres/Pierre.Karpman/cry_eng2019_tp_roos.pdf

— g112123123412345 _ y21F33CAEB45F4D8BC716B91D838CC

—— '8014398509482143 — (x7A2A1DECO9D0325357DAACBF4868F

Question 3 (bonus)

Explain how the function mul11585 works.

Implementing kangaroos

Question 4

Write a function num128 dlog64(numl128 target) that solves the stated discrete loga-
rithm problem using the kangaroo method. Use it to compute the discrete logarithm of
the element represented by 0x71AC72AF7B138B6263BF2908A7B09.

Question 5

Analyse experimentally the behaviour of your implementation. How does it compare with
the heuristic?

Question 6 (bonus)

Tweak some of the parameters of the algorithm (e.g. k, the position of the starting point,
etc.) and analyse the impact this has on the experimental running time.

References

[Gall2] Steven D. Galbraith, Mathematics of Public Key Cryptography, Cambridge
University Press, 2012, Available at https://www.math.auckland.ac.nz/
~sgal018/crypto-book/crypto-book.html.


https://www-ljk.imag.fr/membres/Pierre.Karpman/cry_eng2019_tp_roos.pdf
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html
https://www.math.auckland.ac.nz/~sgal018/crypto-book/crypto-book.html

