
Hash functions 2019–10–04 1/31

Crypto Engineering ’19
]

Hash functions

Pierre Karpman
pierre.karpman@univ-grenoble-alpes.fr

https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html

2019–10–04

pierre.karpman@univ-grenoble-alpes.fr
https://www-ljk.imag.fr/membres/Pierre.Karpman/tea.html


Hash functions 2019–10–04 2/31

Hash functions as a figure

↝ on the board



Hash functions 2019–10–04 3/31

First definition

Hash function

A hash function is a mapping H ∶M→ D

So it really is just a function...

Usually:

▸ M= ⋃`<N{0,1}`, D = {0,1}n, N ≫ n

▸ N is typically ≥ 264, n ∈ {////128, ////160, 224, 256, 384, 512}

Also popular now: extendable-output functions (XOFs): D = ⋃`<N′{0,1}`

▸ Hash functions are keyless

▸ So, how do you tell if one’s good?



Hash functions 2019–10–04 4/31

Idealized hash functions: Random oracles

Random oracle

A function H ∶M→ D s.t. ∀x ∈ M, H(x)
$
←Ð D

▸ “The best we can ever get”

▸ Sometimes useful in proofs (“Random oracle model”, or
ROM)

▸ Not possible to have one (except for small (co-)domains assuming a

TRNG)

▸ But we can get approximations (e.g. SHA-3)

▸ Equivalent to the Ideal Cipher Model (Coron et al., 2008; +
later patches)



Hash functions 2019–10–04 5/31

Main security properties

What is hard for a RO should be hard for any HF
⇒

1 First preimage: given t, find m s.t. H(m) = t

2 Second preimage: given m, find m′ ≠ m s.t. H(m) = H(m′)
3 Collision: find (m,m′ ≠ m) s.t. H(m) = H(m′)

Generic complexity:
1), 2): Θ(2n);
3): Θ(2n/2) ¢ “Birthday paradox”



Hash functions 2019–10–04 6/31

Why do we care? Applications!

Hash functions are useful for:

▸ Hash-and-sign (RSA signatures, (EC)DSA, ...)

▸ Message-authentication codes (HMAC, ...)

▸ Password hashing (with a grain of salt)

▸ Hash-based signatures (inefficient but PQ)

▸ As “RO instantiations” (OAEP, ...)

▸ As one-way functions (OWF)



Hash functions 2019–10–04 7/31

So, how do you build hash functions?

▸ Objective #1: be secure
▸ Objective #2: be efficient

▸ At most a few dozen cycles/byte!
▸ ⇒ work with limited amount of memory

So...

▸ (#2) Build H from a small component

▸ (#1) Prove that this is okay



Hash functions 2019–10–04 8/31

What kind of small component?

Compression function

A compression function is a mapping f ∶ {0,1}n × {0,1}b → {0,1}n

▸ A family of functions from n to n bits

▸ Not unlike a block cipher, only not invertible

Permutation

A permutation is an invertible mapping p ∶ {0,1}n → {0,1}n

Yes, very simple

▸ Like a block cipher with a fixed key, e.g. p = E(0, ⋅)



Hash functions 2019–10–04 9/31

From small to big (compression function case)

Assume a good f

▸ Main problem: fixed-size domain {0,1}n × {0,1}b

▸ Objective: domain extension to ⋃`<N{0,1}`

▸ (Not unlike using a mode of operation with a BC)

The classical answer: the Merkle-Damg̊ard construction (1989)



Hash functions 2019–10–04 10/31

MD: with a picture

pad(m) = m1 m2 m3 m4

fh0 = IV f
h1

f
h2

f
h3

h4 = H(m)

That is: H(m1∣∣m2∣∣m3∣∣ . . .) = f (. . . f (f (f (IV,m1),m2),m3), . . .)

pad(m) ≈ m∣∣1000 . . .00⟨length of m⟩ ← stengthening



Hash functions 2019–10–04 11/31

MD: does it work?

Efficiency?

▸ Only sequential calls to f

▸ ⇒ fine

Security?

▸ Still to be shown
▸ Objective: reduce security of H to that of f

▸ “If f is good, then H is good”

▸ True for collision and first preimage, false for second preimage



Hash functions 2019–10–04 12/31

MD (partial) security proof

Method: simple contrapositive argument

▸ Attack {1stpreim., coll.} on H⇒ attack {1stpreim., coll.} on f

First preimage case

If H(m1∣∣m2∣∣ . . . ∣∣m`) = t, then f (H(m1∣∣m2∣∣ . . . ∣∣m`−1),m`) = t

Collision case (sketch)

If H(m1∣∣m2∣∣ . . . ∣∣m`) = H(m′
1∣∣m

′
2∣∣ . . . ∣∣m

′
`), show that ∃i s.t.

(hi ∶= H(m1∣∣m2∣∣ . . . ∣∣mi−1),mi) ≠ (h′i ∶= H(m′
1∣∣m

′
2∣∣ . . . ∣∣m

′
i−1),m

′
i)

and f (hi ,mi) = f (h′i ,m
′
i)

▸ Proper message padding (such as stenghtening) necessary to
make it work!



Hash functions 2019–10–04 13/31

What about 2nd preimages??

No proof (with optimal resistance), can’t have one:

▸ Generic attack on messages of 2k blocks for a cost
≈ k2n/2+1 + 2n−k+1 (Kelsey and Schneier, 2005)

▸ Idea: exploit internal collisions in the hi s

This is not nice, but:

▸ Requires (very) long messages to gain something
▸ At least as expensive as collision search

▸ Always going to be the case, as preimage ⇒ collision

▸ If n is chosen s.t. generic collisions are out of reach, we’re
somewhat fine

⇒ Didn’t make people give up MD hash functions (MD5, SHA-1,
SHA-2 family)



Hash functions 2019–10–04 14/31

Attack with an expandable message

IV
2k chaining values of the original message M

Hf (M)

m∗
IV

https://www.iacr.org/authors/tikz/

https://www.iacr.org/authors/tikz/


Hash functions 2019–10–04 15/31

Is that unavoidable?

No! Simple patch: Chop-MD/Wide-pipe MD (Coron et al., 2005)
and (Lucks, 2005)

▸ Build H from f ∶ {0,1}2n × {0,1}b → {0,1}2n, truncate output
to n bits (say)

▸ Collision in the output ⇏ collision in the internal state

▸ Concrete instantiations: SHA-512/224, SHA-512/256 (2015)



Hash functions 2019–10–04 16/31

But careful with models!

▸ Coron et al. show very strong provable guarantees for
Chop-MD
▸ Secure domain extender for fixed-size RO

▸ But this in fact doesn’t guarantee weaker ones, such as
preservation of collision-resistance (Bellare & Ristenpart,
2006)!
▸ One can do “stupid things” with a non-ideal compression

function
▸ ↝ Chop-MD with a (real) CR c.f. is not (necessarily) CR!
▸ (In essence, one need strengthening in the padding)



Hash functions 2019–10–04 17/31

Practical impact of the MD proof

▸ If one can’t attack f underlying H, all is well

▸ Else, ...???

▸ ⇒ Attacking f is a meaningful goal for cryptographers (≈
(semi-)freestart attacks)

▸ Ideally, never use a H with broken f



Hash functions 2019–10–04 18/31

The MD5 failure

▸ MD5: designed by Rivest (1992)

▸ 1993: very efficient collision attack on the compression
function (den Boer and Bosselaers); mean time of 4 minutes
on a 33 MHz 80386

▸ MD5 still massively used...

▸ 2005: very efficient collision attack on the hash function
(Wang and Yu)

▸ Still used...

▸ 2007: practically threatening collisions (Stevens et al.)

▸ Still used...

▸ 2009: even worse practical collision attacks (Stevens et al.)

▸ Hmm, maybe we should move on?



Hash functions 2019–10–04 19/31

Was this avoidable?

Yes!

▸ Early signs of weaknesses ⇒ move to alernatives ASAP!
▸ What were they (among others)?

▸ 1992: RIPEMD (RIPE); practically broken (collisions) 2005
(Wang et al.)

▸ 1993: SHA-0 (NSA); broken (collisions) 1998 (Chabaud and
Joux); practically broken 2005 (Biham et al.)

▸ 1995: SHA-1 (NSA); broken (collisions) 2005 (Wang et al.);
practically broken 2017 (Stevens et al. (and me!))

▸ 1996: RIPEMD-128 (Dobbertin et al.); broken (collisions)
2013 (Landelle and Peyrin)

▸ 1996: RIPEMD-160 (Dobbertin et al.); unbroken so far
▸ 2001: SHA-2 (NSA); unbroken so far



Hash functions 2019–10–04 20/31

Lesson to learn?

▸ Don’t use broken algorithms

▸ Care about “theoretical” attacks

Perfect bad example: Git

▸ Don’t use SHA-1 in 2005!

▸ Don’t hide needed security properties!

Also:

▸ Don’t use SHA-1, even if you just care about preimage attacks



Hash functions 2019–10–04 21/31

Back to design: how to do f ?

1 Start like a block cipher

2 Add feedforward to prevent invertibility

Examples:
“Davies-Meyer”: f (h,m) = Em(h) ⊞ h
“Matyas-Meyer-Oseas”: f (h,m) = Eh(m) ⊞m

▸ Systematic analysis by Preneel, Govaerts and Vandewalle
(1993). “PGV” constructions

▸ Then rigorous proofs (in the ideal cipher model) (Black et al.,
2002), (Black et al., 2010)



Hash functions 2019–10–04 22/31

Re: Davies-Meyer

Picture:

Ehi−1 hi

mi

Used in MD4/5 SHA-0/1/2, etc.



Hash functions 2019–10–04 23/31

Re: Re: Davies-Meyer

Why is the “message” the “key”?

▸ Disconnect chaining value and message length!

▸ E ’s block length: fixed by security level

▸ E ’s key length: fixed by “message” length

▸ Large “key” ⇒ more efficient

▸ Example: MD5’s “block cipher” (also bad): 128-bit blocks,
512-bit keys

DM incentive: use very simple message expansion (“key
schedules”)

▸ To be efficient!

▸ Warning: can be a source of weakness (MD5, SHA-0, SHA-1.
Should that be surprising?)



Hash functions 2019–10–04 24/31

Major PGV Warning

PGV constructions are proved secure in the ideal cipher model,
BUT

▸ Real ciphers are not ideal!
▸ Real ciphers don’t have to be ideal to be okay ciphers

▸ IDEA (Lai and Massey, 1991): weak key classes (Daemen et
al., 1993)

▸ TEA (Wheeler and Needham, 1994): equivalent keys (Kelsey
et al., 1996)

What can go wrong?



Hash functions 2019–10–04 25/31

Bad case of crypto design

Microsoft needed a hash function for ROM integrity check of the
XBOX

▸ Used TEA in DM mode (Steil, 2005)

▸ Because of an earlier break of their RC4-CBC-MAC scheme (ibid.)

▸ Terrible idea, because of existence of equivalent keys!

▸ TEA(k ,m) = TEA(k̂ ,m) ⇒ DM-TEA(h, k) =
DM-TEA(h, k̂) ⇒ easy collisions!

▸ Got hacked...

▸ IDEA for a hash function: also bad (Wei et al., 2012)

NEVER DESIGN YOUR OWN CRYPTO!



Hash functions 2019–10–04 26/31

It’s not all that bad, tho

▸ AES in a PGV construction so far unbroken (see e.g. Sasaki
(2011))
▸ But small parameters ‽

▸ Ditto, SHA-256 as a block cipher: “SHACAL-2” (Handschuh
and Naccache, 2001)
▸ Enormous keys, 512 bit!



Hash functions 2019–10–04 27/31

Now just a few examples

The MD4/MD5/SHA-0/SHA-1 family

▸ Merkle-Damg̊ard construction
▸ Davies-Meyer compression function

▸ 512-bit messages, 128-bit (resp. 160-bit) chaining values for
MD4/5 (resp. SHA-0/1)

▸ Very simple message expansion

▸ All broken (MD4 could be broken by hand)

RIPEMD family

▸ Somewhat similar, but uses two parallel lines merged at the
end

SHA-2

▸ Somewhat similar, but heavier message expansion



Hash functions 2019–10–04 28/31

And now for something different

If you need a hash function today ⇒ SHA-3 (initially Keccak,
(Bertoni et al., 2008))

▸ Winner of an academic competition run by NIST (2008–2012)

▸ Sponge construction (not Merkle-Damg̊ard)

▸ Based on a permutation (not a compression function)

Sponge:

1 Compute i ∶= p(p(. . .p(m1∣∣0
c) ⊕m2∣∣0

c) . . .)

2 Output H(m) ∶= ⌊i⌋r ∣∣⌊p(i)⌋r ∣∣ . . . ∣∣⌊p
n(i)⌋r



Hash functions 2019–10–04 29/31

Picture of a sponge

Absorbing phase Squeezing phase

m0

c bits

r bits

f

m1

f

m2

f

m3

f

z0

f

z1

f

z2

https://www.iacr.org/authors/tikz/

https://www.iacr.org/authors/tikz/


Hash functions 2019–10–04 30/31

Sponge nice features

▸ Indifferentiable from a RO (same, as Wide-pipe MD) (Bertoni
et al., 2008)

▸ Quite flexible
▸ For fixed permutation size: speed/security tradeoff

▸ Natively a XOF

▸ Can be extended to do (authenticated) encryption

▸ Simpler to design a permutation; less of a waste?

▸ Close structure: JH construction, another SHA-3 competitor
(Wu, 2008)



Hash functions 2019–10–04 31/31

Conclusion

▸ Don’t design crypto yourself!
▸ There is no generic way to design a hash function
▸ Every small detail counts (recall e.g. SHA-0, TEA)

▸ Use SHA-3 (SHA-2 still okay)
▸ NEVER USE MD5/SHA-1

▸ Even if you only care about preimage attacks


